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PREFACE

This thesis provides an Ab-Initio investigation of the structural, electronic and elastic
properties of some 11-V, semiconducting compounds. The chapters are arranged into
six parts. The properties mentioned in these chapters (3 to 5) are kept as independent
as possible. The thesis addresses mostly DFT studies of a-CdP,, a-ZnP, and ZnAss;.
The data in the tables provide an idea of the typical estimated values of the various
physical quantities in this thesis. For concreteness and completeness, captions in the
tables and figures are included.

This thesis also addresses computational tools relevant to the investigation. The
area of computational materials science has seen revolutionary developments in the
past few decades. The driving force in computational materials science is the rapid
growth of cost-effective computational technology. Computational materials science
invites visualization and independent discovery through modern software. Some
results in this thesis have been mentioned from published research papers in scientific
journals. In the thesis, a list of figures and a list of tables are provided before the start
of Chapter 1. The abbreviations used in the thesis are also listed. Tables are presented
in conventional units. The symbol e represents the charge of a proton. It is taken as a
positive.

The first chapter deals with an introduction and review of the literature.
Moreover, component elements of 11-V, semiconductors are also introduced in the
first chapter. A review survey of II-V, semiconducting compounds has been
introduced in the first chapter. Semiconductors have many technological applications.
Chapter 1 illustrates that the usefulness of semiconductors in device applications has
become an important area of research. The motivation for the work and outline of the
thesis have been incorporated in Chapter 1.

The purpose of the second chapter is to give a glimpse of the basic research
methods that are applied in this study. Chapter 2 includes the theoretical framework
for this investigation. Chapter 2 addresses useful software/tools such as CRYSTAL
Code, DL Visualize, CRYSPLOT and ELATE. In this thesis, a brief description of
computational tools is also illustrated in Chapter 2. The second chapter deals with the
computational procedure adopted in the thesis.
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Chapter 3 is devoted to the structural properties of the compounds. Chapter 3
incorporates optimized lattice parameters for compounds. The third chapter also deals
with the equation of states.

Chapter 4 addresses the electronic properties of 11-V, semiconducting

compounds. Various descriptions of electronic properties have been included to make
it possible to explore the electronic characteristics of the compounds. The description
of electron transfer is part of the Mulliken population discussion for
11-V2 semiconducting compounds. Electronic band structure calculations are carried
out along high symmetry directions for special points in the Brillouin zone. Figures
for the density of states illustrate the contribution of nonequivalent atoms and atomic
shells to the density of states. The density of state interpretation enhances the
understanding of the contribution of electronic shells to conduction properties.
The fifth chapter deals with the elastic properties of the materials. Mathematical
expressions are an intrinsic part of elasticity. Essential mathematical equations have
been incorporated in Chapter 5 to describe the polycrystalline properties, anisotropy,
etc. The anisotropy of compounds is elaborated through two-dimensional and three-
dimensional view diagrams. Attention has also been paid to describing anisotropic
parameters in the elasticity section. In Chapter 6, attention is turned to important
conclusions and future scope. Standard notations and symbols are used in the thesis.
A consistent reference style is followed in references. The bibliography section
includes the DOI of sources as much as possible. Efforts have been made to form this
thesis systematically.
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Polar graphs (2D view) for the directional-dependent shear
modulus G (in GPa) of ZnAs;, at zero pressure under the
PBE scheme.

Polar graph (3D view) for the directional-dependent shear
modulus G (in GPa) of ZnAs;, at zero pressure under the
PBE scheme.

Polar graphs (2D view) for the directional-dependent
Poisson’s ratio v (unitless) of ZnAs; at zero pressure under
the PBE scheme.

Polar graph (3D view) for the directional-dependent
Poisson’s ratio v (unitless) of ZnAs; at zero pressure under
the PBE scheme.
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1.1 Introduction

The choice, formation and use of materials have been part of civilization. There is the
continuous advancement of material classes and properties [1]. Materials are
represented through their properties, such as electronic band gap, density, thermal
conductivity, coefficient of thermal expansion, Young’s modulus, Poisson’s ratio, etc.
The productive application of materials requires that they fulfill specific properties.
Exposure to material properties provides upgraded technology with improved
performance [1]. The usefulness of semiconductors in devices has encouraged
accelerated research endeavors to characterize their properties better [2]. A quantum
mechanical ab-initio computer program provides the computation scheme to
investigate many properties of crystalline systems [3].

Many solids have the crystalline nature. In crystals, the atoms follow a three-
dimensional periodic structure. This regularity helps to develop methods to
investigate the properties of crystalline solids. In actual situations, solids do not
extend to infinity [4]. Real solids terminate on surfaces, which make up defects in the
three-dimensional periodic crystalline structure [4]. The typical ratio of atoms in the
bulk to atoms on the surface of a real solid is 10%: 1 [4]. Therefore, despite the surface
defect, it is reasonable to assume that a real solid behaves nearly like an infinite
periodic solid [4]. To characterize the crystal, the positions of the atoms of the basis in
the conventional cell are to be identified [5]. The crystal structures have significance
for technologically advanced materials.

The main method for examining the arrangement of atoms in crystalline solids is
X-ray diffraction [6]. The type of lattice and separation between lattice planes can be
identified with the X-ray diffraction technique. In X-ray diffraction, the wavelength of
an electromagnetic wave is of the order of the distance between atoms. X-ray
reflection follows Bragg’s law.

The quest for appropriate materials for photovoltaic (PV) applications has
broadened over the past several years [7]. Semiconductors have many technological
applications, such as solar cells, transistors, light-emitting diodes (LEDs),
photoconductors, charge-coupled devices, strain gauges, lasers, etc. [8]. Generally,
semiconductor devices are relatively economical and have reliability [8]. Applications
of the optical properties of solids are commercially valuable [9]. Photonic crystals for
optical integrated circuits have become an important area of research [9]. With




Chapter 1

concern about the increasing energy requirements of society, researchers are paying
attention to further investigation of renewable energy sources, like solar devices,
etc. [10].

Crystal orbitals (solid wave functions) extend throughout the solid, so these may
be referred to as delocalized orbitals [11]. For accuracy in electronic structure
treatment, the inclusion of electron-electron interactions is very essential [12]. The
electronic properties of solids are influenced by crystal potential. Generally, an
unfilled band of orbitals is known as a conduction band [6], whereas a filled band is
known as a valence band [6]. The band gap depends on the temperature [8]. The band
structure can illustrate the manner in which electrons in the solids will react to
external disturbances [4]. Here, external disturbances mean the emission or absorption
of light [4]. This response of electrons may be correlated with the electrical and
optical properties of solids [4]. The electronic band structure of solids has utility in
determining the reflectivity and dielectric properties [4].

The plot between the energy E and the wave vector k is known as the E-k diagram.
The E-k plot is also known as the dispersion relation or band structure for electronic
states [13]. The energy eigenvalue E, (k) is associated with band index n [11]. Each
band has a specific energy range [11]. In crystals, the number of bands is large [11]. If
the lowest of the conduction band and the highest of the valence band are at the same
wave vector in the E-k diagram, it is called a direct band gap semiconductor [8]. In the
indirect band gap semiconductor, the lowest of the conduction band and the highest of
the valence band are not at the same wave vector in the E-k diagram [8]. The E-k
diagram has utility in the determination of the band gaps (namely, direct and indirect)
of semiconductors. To illustrate specific physical phenomena, the Brillouin zone (BZ)
scheme in reciprocal space is utilized. There are special k points, which are high
symmetry points in three-dimensional Brillouin zones. Electronic band structure
calculations are generally carried out along high symmetry directions for these special
points (namely X, Z,M, A, 2, T etc.) in the Brillouin zone and dispersion E-k curves are
plotted [4]. The characteristics of electronic energy bands along the high-symmetry
directions (joining special points) of the Brillouin zones are significantly useful [4].

As a function of energy, the density of electronic states is a useful concept for

. . : . . dN
analyzing the electronic band structure of solids. The density of states is given by E
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where dN represents the number of states existing between energy levels Eand
E + dE. Position of Fermi energy in the density of states versus energy plot plays a

key role in determining transport properties of solids [13]. The highest occupied

energy surface in a wave vector k is the Fermi surface for solids at zero Kelvin
temperature [8] and energy is constant throughout this Fermi surface [14]. The
electrons near the Fermi surface are responsible for many electrical properties [8].
Both extended zone and reduced zone methods are implemented to visualize the
Fermi surface [14]. The Fermi surface that is experimentally measured gives a goal at
which the first principle electronic band structure computation can target [15]. For the
deduction of the geometry of the Fermi surface, one of the powerful techniques is the
de Haas-van Alphen effect [15].

Many properties are represented by tensors. Tensors are categorized based on their
rank [16]. Different physical properties may be explained by different order tensors,
even for the same material. For construction objectives, the applicability of a given
solid is also determined by its mechanical properties [2]. Properties that depend on
crystal structure are known as structure-sensitive properties [2]. Some specific
predictions about the properties of crystals may be made for known crystal
structures [2].

There is a change in the shape of the crystal when a stress is applied to it [16].
Strain is recoverable under a certain limit of stress, i.e., under elastic limit [16].
Hooke’s law applies only to small strains [17]. For large strains, stress-strain curves
enter into the nonlinear region [17]. Elasticity is a centrosymmetric type of
property [16]. Elasticity may be dealt with tensors. Elasticity theory forms a
mathematical model of the deformation of matter [18]. This mathematical model of
elasticity has been commonly formulated using tensor language and calculus. The
solid body is assumed to be a continuous medium [19].

The characterization of the mechanical properties of solids is generally carried out
with constitutive stress-strain relations [18]. Directional stress-strain responses
typically arise from microstructural peculiarities within the anisotropic solid [18]. The
deformation response of many solid samples depends upon the orientation [18].
Property that changes with direction is called an anisotropic phenomenon [20]. In
general, crystals are said to be anisotropic because of their direction-dependent
properties. Such properties of crystals vary with direction. Anisotropy concerns the
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type of symmetry of the crystal. As crystals have some direction-dependent
properties, all crystals are anisotropic [16]. Anisotropy is an intrinsic quality of a
continuum [20]. For anisotropic crystals, applying any stress component results in
other strain components. The elastic anisotropy of materials has a significant role in
their functions [21]. The elastic anisotropy may affect certain material properties,
such as, phase transformations [22] and fracture toughness [23].

Young’s modulus and linear compressibility are direction-dependent quantities.
For all classes of crystals, Young's modulus is anisotropic, even for cubic crystals
[16]. The theory of elasticity elaborates on the utility of crystals for the analysis and
design of advanced materials [24]. The elastic perspective is valuable as it provides
structural performance. Now, new computational methods have emerged as research
tools to examine the elastic properties of materials. In computational materials
science, it is expected that computationally predicted results for materials may be
experimentally validated in the future. Differences in the performance of the materials
may be attributed to specific internal structures of the materials. Complex variable
theory also acts as a very useful technique for solving elasticity problems [18]. From
the point of view of technological applications, the determination of ductile and brittle
materials by means of the theory of elasticity is also important.

11-V semiconductor compounds are made from the 12" and 15" column elements
of the periodic table. These compounds have utility in the fabrication of
optoelectronic devices [25, 26, 27]. From the thermal point of view of ternary phase
diagrams, compounds of As and P with Cd and Zn are of importance [28].

1.1.1 Group Il and Group V Elements for 11-V, Semiconducting

Compounds

Zn, Cd and Hg are elements of Group Ilg. Group 12 is also known as Group llg.
Zn, Cd and Hg each have an electronic ground state 150 [29, 30]. The electron
configurations of zinc (30), cadmium (48) and mercury (80) are [Ar]3d*°4s?,
[Kr]4d*5s® and [Xe]4f**5d"°6s®, respectively [29, 30]. The first ionization

energies of Zn, Cd and Hg are 9.394197 eV, 8.993820 eV and 10.437504 eV,
respectively [30]. The second ionization energy (IE) of Zn is 17.96440 eV [29]. The
second ionization energies of Cd and Hg are 16.90832 eV and 18.756 eV, respectively




Chapter 1

[29]. The crystal structure of Zn and Cd is hexagonal [29]. At a temperature of 293 K,
the shortest interatomic distances in solids for Zn and Cd crystals are 2.66 A and 2.97
A, respectively [29]. Young’s modulus E, shear modulus (modulus of rigidity) G and
Poisson’s ratio v of zinc are 92.7 GPa, 34.3 GPa and 0.29, respectively [29]. Young’s
modulus E, modulus of rigidity G and Poisson’s ratio v of cadmium are 62.3 GPa,
24.5 GPa and 0.30, respectively [29]. Zinc is a ductile metal, whereas cadmium is a
soft metal [29]. Zn and Cd metals are bluish-white [31]. At temperature 293 K, the
electrical resistivities of zinc and cadmium are 5.43x10° Q mand 6.8x10° Q m,
respectively [29]. Cadmium has utility in Ni-Cd rechargeable batteries [31, 32]. Zn
has utility in galvanizing the other metals [32]. Zinc is used to form alloys [31, 33].
Hg is a virulent poison [31]. Group 15 is also known as Group Va [29]. Nitrogen,
phosphorus, arsenic, antimony and bismuth are elements of Group Va. The electron

configurations of N, P, As and Sb are [He]2s*2p°, [Ne]3s*3p®, [Ar]3d*°4s*4p®and
[Kr]4d*5s*5p°, respectively [29, 30]. Elements N, P, As, Sb and Bi each have an

electronic ground state “S,, [29]. The first ionization energies of N, P, As, Sh and Bi
are 14.53413 eV, 10.486686 eV, 9.78855 eV, 8.608389 eV and 7.285516 eV,
respectively [30]. The crystal structure of P is orthorhombic (C) [29]. As, Sb and Bi
have a trigonal (R) crystal structure [29]. N has characteristics of gases, whereas P
and As have characteristics of semiconductors [29]. Sb and Bi have semimetal and

brittle metal characteristics, respectively [29]. At room temperature, the electrical

resistivities o, of As, Sb and Bi are nearly 2.60x107 Qm, 3.70x10”7 Q m and

1.068 x 10°° Q m, respectively, in the solid state [29].
1.2 An Overview of Some 11-V, Semiconducting Compounds

1.2.1 11-V, Phosphides

Two different crystalline phases of ZnP, are designated as a-ZnP, and
B-ZnP, [28, 34]. The a-ZnP, and B-ZnP, have tetragonal and monoclinic structures,
respectively [28, 34]. A tetragonal crystal structure of the alpha phase of ZnP, was
reported by Stackelberg et al. [35] and White [36]. At temperature 293 K, an indirect
energy band gap of 1.65 eV (polarization E_Lc) is found in a-ZnP, [37]. The space

group of B-ZnP, is C; [38]. Monoclinic ZnP, has lattice parameters nearly
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a=8.85A, b=7.29A, ¢c=756A and angle 8 =102.3°[34]. B-ZnP, crystal is
black-greenish [39]. The resistivity of f-ZnP; is nearly 10 Qcm [34, 39]. The unit

cell of the beta phase of ZnP, has 08 formula units [39]. Also, the optical energy gap
of monoclinic ZnP, is around 1.33 ~1.37 eV [34, 39]. Two phases of CdP; are
designated as a-CdP, and B-CdP, [40, 41]. a-CdP, and B-CdP, have Orthorhombic
[28, 40] and tetragonal [28] structures, respectively. The band gap of the beta phase of
CdP, for polarizations E||C and E _Lc was studied by Sobolev et al. [37]. Cadmium

diphosphide finds applications in optoelectronics because of its nonlinear light
absorption property [42]. CdP, may be useful in the fabrication of photoresistors
because of its photosensitivity in the visible region [43]. Tetragonal CdP, and ZnP,

crystals are gyrotropic [44].
1.2.2 11-V; Arsenides

CdAs; and ZnAs; have tetragonal [45] and monoclinic [46] structures, respectively.
The space group (SG) of monoclinic ZnAs; is P2,/c (C;,) [46, 47]. CdAs, and ZnAs;
have anisotropic optical and electrical properties [48, 49]. The lattice constants of
CdAs; crystal structure are a=7.96 A, ¢ =4.67 A [45]. The unit cell of CdAs; has 04
formula units and a space group 14,22[45]. The mass density of CdAs, is
5.8 g/cm’[45]. At a temperature of 300 K, the indirect energy gap for CdAs; is
0.995 eV (polarization E||C) [48]. CdAs, has specific molar heat capacities
C, =74.46 J/((mol-K)and C, =74.75 J/(mol-K) at a temperature of 300 K [50]. The

value of birefringence in the infrared region is high for the CdAs; crystals [51].

1.3 Review of Literature

1.3.1 CdP,

Berak et al. (1968) studied the cadmium-phosphorus system [52]. As per their
study [52], CdP, could exist in 02 phases. The alpha phase of CdP, is an
orthorhombic crystal low-temperature form [40, 52]. As per investigation by the

X-Ray powder method, the alpha phase of CdP, has lattice parameters a =9.90A ,
b=5408A & c=5.171A [40]. The space group of the alpha phase of CdP, is
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Pna2; [40]. Goodyear et al. [40] also investigated the fractional coordinates of non-
equivalent atoms of a-CdP,. They [40] also studied the bond length between atoms of

a-CdP,. The density of a-CdP; is nearly 4.18 g/cm?® [40]. Olofsson et al. [53] provided

further refined data on fractional coordinates and bond lengths for a-CdP, using the
least-squares program. The energy band structure of tetragonal cadmium diphosphide
was studied experimentally by Sobolev et al. [37]. Tetragonal cadmium diphosphide
has a Brillouin zone in a rectangular parallelepiped shape [37]. The energy band gaps
(direct and indirect) of tetragonal CdP, were studied by Sobolev et al. [37]. The
variation in the optical activity of CdP, with frequency was studied by Borshch et al.
[42]. An investigation of the self-induced rotation of polarized electromagnetic waves
in tetragonal CdP, was carried out [54]. The Raman spectrum of B-CdP, was observed
by Gorban et al. [55] and Garasevich et al. [44]. For the ZnP,-CdP, system, phase
diagram investigation was carried out by Smolyarenko et al. [56]. Babonas et al. [57]
examined the optical activity of tetragonal CdP; crystals. Manolikas et al. investigated
different phases of cadmium diphosphide by the electron diffraction method [58]. The
thermal expansion coefficient of B-CdP, as a function of temperature was examined
by Sheleg et al. [59]. CdP; crystals have high photosensitivity [43]. Polygalov et al.
calculated the electron density of the beta phase of CdP, by means of the pseudo-
potential method [60]. The dielectric properties of tetragonal CdP, were investigated
by Aleinikova et al. [61] and Kozlov et al. [62]. Gnatyuk et al. [63] studied the optical
dispersion of tetragonal CdP; crystals. Tetragonal CdP, crystals have utility in the
fabrication of light (electromagnetic wave) filters and temperature sensors [64].
Tetragonal CdP; crystals are useful in making deflectors of laser beams due to their
temperature-dependent refractive index and low heat conduction properties [65]. The
variation of the specific heat of B-CdP, with temperature was studied by Kopytov
et al. [66]. For the tetragonal CdP,, temperature-dependent elastic stiffness
coefficients were examined by Soshnikov et al. [67]. Tetragonal CdP, has a high
Verdet constant [68]. Yeshchenko et al. [69] fabricated CdP, nanoclusters and
investigated their optical properties. Stamov et al. [70] investigated the electrical
properties of Schottky barriers made on n-type CdP,. Using LDA (Local Density
Approximation) and GGA (Generalized Gradient Approximation) functionals, the
structural and electronic properties of tetragonal cadmium diphosphide were

examined by Feng et al. [71]. In the case of CdP; crystal (symmetry D), 6540A is
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isotropic wavelength [27]. Feng et al. [72] computed the Vickers hardness values for
both phases of cadmium diphosphide. Feng et al. [72] studied the phonon properties
of a-CdP; and B-CdP,. Shportko [73] examined the impact of P and Cd vacancies on
the characteristics of B-CdP,. Popov et al. [74] studied the variation of the thermal
conductivity of B-CdP, with temperature. The variation of the resistivity of CdP, with
electron fluence (14-MeV) was studied by Zavada et al. [75]. The beta phase of CdP,
has a band gap of about 2.02 eV [54, 68, 73]. The alpha phase of cadmium
diphosphide has a band gap of 2.01 eV [76]. The a-CdP, was prepared by a chemical
transport reaction [76]. The alpha phase of cadmium diphosphide shows a strong SHG
effect and high laser-induced damage thresholds [76]. The a-CdP, has a large
birefringence and a broad infrared transparent range [76]. These optical properties
indicate that the alpha phase of CdP; is an attractive infrared (IR) nonlinear optical
material [76]. The alpha phase of cadmium diphosphide has a second-order nonlinear
optical susceptibility [76].

1.3.2 ZnP,

The resistivity of a-ZnP, is of the order of 10°Qcm[34]. A study of the

photoluminescence of a-ZnP, with ultraviolet light was carried out by Hegyi
et al. [34]. The resistivity of B-ZnP; is of the order of 10 Q2cm [34]. Hegyi et al. [34]

reported fractional coordinates of non-equivalent atoms in the unit cells of a-ZnP, and
B-ZnP, crystals. The crystal structure of tetragonal ZnP, was investigated
experimentally by White [36]. The pressure-induced transition in ZnP, was examined
by Tanaka [39]. Rubenstein et al. [77] prepared single crystals of a-ZnP; and B-ZnP-.
Rubenstein et al. [78] studied the electroluminescence emission spectra of tetragonal
ZnP,. The thermodynamic properties of ZnP, were studied by Jordan [79]. The energy
band structure of tetragonal zinc diphosphide was studied experimentally by Sobolev
et al. [37]. As stated by Sobolev et al. [37], tetragonal zinc diphosphide has a
Brillouin zone in a rectangular parallelepiped shape. Sobolev and Syrbu
experimentally investigated the energy band structure of monoclinic zinc
diphosphide [38]. The energy band gap E; of monoclinic ZnP, was studied through
photoconductivity and edge reflectivity [38]. Wardzynski et al. illustrated the
photoluminescence spectra of tetragonal zinc diphosphide [80]. The alpha phase of
zinc diphosphide may have utility in the field of optoelectronics [28]. Self-induced

8
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rotation of polarized electromagnetic waves in tetragonal ZnP, was analyzed by
Borshch [54]. The study of the Raman spectrum of a-ZnP, was carried out by Gorban
et al. [55]. The variation of thermal expansion coefficients of a-ZnP, with
temperature is examined by Sheleg et al. [81]. The nature of the acceptor levels in
a-ZnP, was examined by Januskevicius et al. [82]. Sobolev et al. [83] studied the
reflection spectra of monoclinic ZnP,. Jayaraman et al. [84] studied the pressure-
dependent Raman spectra of the alpha phase of ZnP,. The crystal structure of zinc
diphosphide with pressure variation was studied by Rubtsov et al. [85]. The elastic
properties of a-ZnP, were investigated on the basis of sound speed measurement by
Soshnikov et al. [67]. The dielectric properties of a-ZnP, were investigated by
Aleinikova et al. [61]. Structural investigation of p-ZnP, was carried out using the
X-ray diffraction method [86]. Ultrasonic shear and longitudinal speeds were
determined along the axes of a-ZnP, crystals [67]. For the tetragonal o-ZnP,,
temperature-dependent elastic stiffness coefficients were examined by Soshnikov
et al. [67]. Modulus of rigidity and bulk modulus of a-ZnP, were determined by
Soshnikov et al. [67]. The phase composition of ZnP, crystals in different temperature
regimes was examined by Shportko et al. [87]. The computed Debye temperature of
the alpha phase of zinc diphosphide is 292 K [88]. The alpha phase of zinc
diphosphide has a lower elastic anisotropy than that of the beta phase of zinc

diphosphide [88]. As per Stamov et al., ZnP,-C, has an isotropic wavelength

9060 A [89]. The Raman spectra of tetragonal zinc diphosphide were studied by

Shportko et al. [90]. The study of phase diagrams for ZnP, was carried out by
Trukhan et al. [91]. Stamov et al. [92] studied the luminescence spectra of tetragonal
ZnP, doped with Mn, Sb and Cd. The Debye temperature for a-ZnP, is 280 K [93].
Dorogan [94] studied the optical anisotropy of zinc diphosphide. The gyration

property of ZnP,-D] is useful for governing photodiode characteristics [95].

Zivkovi¢ et al. [96] investigated the structural and elastic properties of the alpha and
beta phases of zinc diphosphide through the DFT method. Carbon-modified ZnP,-
based composites are useful for better electrochemical performance [97]. ZnP; is
useful in making carbon-modified composites due to its better sodium reactivity [97].
An investigation of phonon dispersion for tetragonal zinc diphosphide was carried out
by Litvinchuk et al. [7]. S. H. Oh et al. [98] synthesized zinc diphosphide nanowires
using bismuth catalysts.
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1.3.3 ZnAs,

ZnAs; is a monoclinic crystal with 08 formula units in the unit cell, as reported by
Senko et al. [46]. Sobolev et al. [38] studied the optical spectra of the ZnAs; crystal.
Lattice parameters of ZnAs, were experimentally reported by Fleet [47]. ZnAs;
crystals have anisotropy in optical absorption and electrical resistivity [47]. The

resistivity o of ZnAs; along vector a is nearly ten times greater than that along vector

c at room temperature [28]. FIR absorption spectra in ZnAs, were investigated by
Weszka et al. [99]. Matveeva et al. [100] studied the photo-reflectivity properties of
monoclinic ZnAs, by the electro-reflectance method. The variation of the Hall
coefficient with pressure was studied for p-ZnAs, by Mollaev et al. [101].
Temperature-dependent Hall coefficients of n-type and p-type ZnAs, were studied by
Morozova et al. [102]. Yakushev et al. [103] studied the Er-implanted ZnAs; and its
temperature stability. Zinc diarsenide crystals have high optical and electrical
anisotropy [64]. ZnAs; crystals are useful for making sensitive thermoelements [64].
Zinc diarsenide crystals may be useful in making light (electromagnetic wave)
filters [64]. Light (EM wave) filters for nearly IR region using ZnAs; crystals have
technical applications [64]. Soshnikov et al. [67] studied the elastic properties of
ZnAs; crystals. Ultrasonic shear and longitudinal speeds were determined along the
axes of zinc diarsenide crystals [67].

Nikolaev et al. [104] carried out an investigation of the polarization photosensitivity
of the Schottky barriers on the zinc diarsenide. Marenkin et al. [48] investigated the
optical and transport properties of ZnAs; crystals to study their band structure. ZnAs;
may be used for infrared polarizers, as ZnAs, crystal has inhomogeneities in the
refractive index [48, 105]. Zinc diarsenide crystals have a high value of infrared
transmissivity in a wide range [48]. Zinc diarsenide crystal has a sharp fundamental
absorption edge [48]. ZnAs; crystal is a promising material for devising infrared cut-
off filters [48]. An investigation of the phase diagram for ZnAs; was carried out by
Trukhan et al. [91]. A phase diagram study of the ZnAs,—MnAs system was carried
out by Marenkin et al. [106]. Stamov et al. studied the dispersion in ZnAs, for
excitonic transitions [107]. The thermodynamic properties of ZnAs, were examined
by Kidari et al. [108]. Excitonic polaritons of zinc diarsenide were studied by Syrbu
et al. [109]. The photovoltaic characteristics of surface-barrier photosensitive

structures based on ZnAs; were studied by Stamov et al. [110].

10
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1.4 Motivation for Work and Outline of the Thesis

I1-V semiconductor compounds are promising materials for photovoltaic applications,
as they are made from relatively cost-effective materials. Alpha phase of CdP; has not
yet been explored much. As far as we know, until present, there has been no extensive
analysis of the elastic anisotropy of 11-V, semiconductor compounds. Little attention
was paid to the Mulliken population analysis of II-V,; materials by researchers.
Therefore, the study of overlap populations between the atoms of these compounds
was not well known. There was little experimental information on the elastic
quantities of 11-V, compounds. As far as we know, there is no other extensive study of
the equation of states and pressure derivatives of these compounds. There is no
significant study of the pressure-dependent properties of 11-V, compounds. Our
comprehensive theoretical analysis with the DFT method will be useful for
experimenters.

Our study is aimed at filling this research gap by investigating the structural,
electronic and elastic properties of the alpha phase of cadmium diphosphide, the alpha
phase of zinc diphosphide and monoclinic zinc diarsenide. To the best of our
knowledge, until the present work, there has been almost no study about the variation
of Young’s modulus, linear compressibility, shear modulus and Poisson’s ratio in
different planes. Our elastic anisotropy investigation will be useful for determining
the orientation of crystals for optimum performance of the optoelectronic devices
made from these compounds. The nonlinear optical properties of these compounds are
useful for governing the characteristics of optoelectronic devices. Owing to the dearth
of work, such as elastic anisotropy, etc., our investigation will give an outlook on
relevant device design for experimental research.

The thesis comprises six chapters. Chapter 1 deals with I1-V Group elements, 11-V;
semiconductors, a review of the literature, etc. Chapter 2 introduces the theoretical
framework and useful software/tools for the present work. In Chapter 3, structural
properties, such as structural details, structural diagrams, equation of states, etc., are
elaborated. Chapter 4 deals with the band structures and the density of states. It also
illustrates the Mulliken population analysis. Chapter 5 introduces elastic properties. It
illustrates elastic stiffness constants, Young’s modulus, bulk modulus, shear modulus
and Poisson’s ratio of compounds. Chapters 3 to 5 are relatively independent. The
final Chapter 6 of the thesis describes the important conclusions drawn.

11
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2.1 Introduction

Applications of ab-initio calculations are on a large scale in chemistry and materials
science. Ab-initio computations explore the properties of the many-electron system
for atoms, molecules, solids, etc. The computation cost (in terms of the computer run
time for computation) of ab-initio methods is continuously decreasing because of the
advancement of computer technology. In density functional theory (DFT), the
properties of a system are predicted with the help of the electron density of the
system. As per LDA (Local Density Approximation), only the electron density
influences the exchange-correlation energy. The GGA (Generalized Gradient
Approximation) also includes the gradient of the charge density term. The estimated
results obtained with the ab-initio methods may be compared with experimental
results for further interpretation.

2.2 Theoretical Framework

2.2.1 DFT (Density Functional Theory)

Along with the variation principle, the Thomas-Fermi (TF) equations are considered
the first endeavor to formulate density functional theory (DFT) [111, 112, 113]. DFT
is based on the electron density p(x,y,z) [114]. Density functional theory (DFT)

describes that the ground-state electronic energy of a molecule or atom can be

estimated from the electron densityp(x,y,z)instead of the wavefunction
v (X,y,z) [115]. In DFT, electron density distribution p(F) performs a key role in

lieu of the many-electron wavefunction [116]. The conventional wave function
schemes deal quite successfully with a system of a few atoms [116]. However, in
dealing with very many-atom systems, conventional wave function schemes have
limitations [116]. The determination of all ground-state electronic energy is uniquely
carried out by means of electron density in the Hohenberg-Kohn (HK)
formulation [12, 115, 117]. The Hohenberg-Kohn formulation does not reveal the
form of functional dependence of ground-state energy on the electron density [12].
Kohn and Sham formulated a practical application of DFT by employing Kohn-Sham
(KS) orbitals [118, 119]. Kohn-Sham orbitals are functions that illustrate the electron
density in DFT calculations [118, 119]. As per the Kohn-Sham formulation [119, 120]

12



Chapter 2

n() =l (F)f
k=1

ch[n](F) = 5%(?) Exc[n]

[_%vz + Vet (F)}//k(F) =&y, (T)

Ver (1) =V (0 + [ - AN 4V, ](0)
Ny L L oeydrdr .
E= éek _Eﬂ n(f)ﬁn(f)df‘df’ +E,[n] jvxc[n(r)]n(r)dr

where

n(r) represents electron density

N represents the number of electrons in the system
v, () represents occupied Kohn-Sham (KS) orbitals
V,. represents exchange-correlation potential

E,. represents exchange-correlation energy

Vi (F) represents effective potential

V (F) represents external potential

E represents the total energy of many-electron system

&, represents the eigenvalues of occupied states

As per Kohn-Sham formalism, the Kinetic energy functional is split mainly into two

parts [115]. Kohn-Sham DFT has many similarities with HF (Hartree-Fock) theory,
but in general, results obtained with KS DFT are much better [115]. The Hartree-Fock

scheme does not take account of the electron correlation [12]. After Kohn-Sham

formalism, material scientists employed Kohn-Sham DFT using the LSDA (Local-

Spin-Density Approximation) to investigate the properties of solids [121]. In the mid-

1980s, gradient-corrected functionals were introduced; this led to major advancements

in DFT [121]. Then, analytic gradients were introduced in DFT, which immensely

helped in the calculation of geometries [121]. The facility for density functional

13



Chapter 2

calculations was introduced to the Gaussian program in 1993 [121]. The inclusion of
correlation effects in the calculations is an advantageous feature of DFT [119, 121].
The used percentage of Hartree-Fock exchange energy is a major distinguishing
feature of the hybrid functionals [114].

2.2.2 LCAO (Linear Combination of Atomic Orbitals)

Electrons that reside in the low energy core levels of a free atom obey strong
localization [122]. These core electrons are strongly localized when atoms form
crystals [122]. Hence, electrons in the crystals may be illustrated using the linear
superposition of atomic eigenfunctions [122]. LCAO (Linear Combination of Atomic
Orbitals) or tight binding approximation is useful for dealing with solutions of
periodic potential crystals [123].

Crystalline orbitals may be expressed as a linear combination of Bloch functions in
the following manner [124]:

v k) =Y a,i(K)g,(F: k)
8, (F:K) =Y 0, (F - A, —5)e*?
g

w; (T IZ) denotes a crystalline orbital
¢, (T ;k) denotes the Bloch function

¢,(F) denotes atomic orbitals (local functions)

g denotes a lattice vector

—

A, represents the nucleus position in the zero reference cell, on which ¢, (F) is

centered
The local functions may be represented as linear combinations of Gaussian type
functions [124]:

0, (T-A,-§)=>dG(a;;T-A,-09)
j

d denotes a fixed coefficient

a denotes an exponent
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2.2.3 Basis Set

A set of mathematical functions that constructs the wave function is called the basis
set [111]. A complete basis set (BS) is made up of an infinite number of
functions [115]. Such a complete basis set is not feasible in actual computations [12,
115]. A finite basis set is implemented in computations [12]. Hence, the
implementation of a finite basis set creates an inherent approximation [115]. This
incompleteness of the basis set produces an error, known as the basis-set truncation
error [12]. In the calculation of electronic structure, two types of basis functions are
commonly used, namely, Gaussian type orbitals and Slater type orbitals [115]. The
next advancement of the basis sets is the Double Zeta (DZ) basis sets [115]. The next
improvement in the basis sets is a Triple Zeta (TZ) basis sets [115]. For the basis sets,
higher angular momentum functions concern the polarization functions [115]. In the
presence of loosely bound electrons, diffuse functions are required [115]. The plane-
wave basis set has the orthonormality property [125]. Larger basis sets may increase
accuracy in results, but they may also increase computation time [114].

2.2.4 Mulliken Population

Atomic and overlap populations can be determined using the Mulliken population
analysis scheme [126]. The computation of LCAO coefficients provides the overlap
population, which measures quantitatively the bonding and antibonding
strengths [126]. The covalency of the bonds within the crystal and the overlap
population of the nearest neighbors have a correlation [127]. The positive value of the
overlap population between two atoms is considered a bonding state [126]. Similarly,
the negative value of the overlap population between two atoms is considered an
antibonding state [126]. Overlap population may be considered as an index of
binding [128, 129]. Overlap population values close to zero suggest that the electronic
populations of the two atoms do not have considerable interaction [127]. There is a
correlation between the overlap population of bonds and the bulk modulus of the
crystals [127].
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2.2.5 Equation of State (EOS)

A PVT (Pressure-Volume-Temperature) relation forms an equation of state [130,
131]. It has utility in investigating solid state theories [130, 131]. The values of
various thermodynamic parameters, such as bulk modulus, the first pressure
derivative of bulk modulus, etc., may be predicted using the equation of state [130,
131]. Thermal expansions of solids are much less than those of gases [132].
Therefore, the isothermal equation of state is usually used for the study of solids
[132].

The equilibrium isothermal bulk modulus (B, ) of a crystal may be expressed as
o[ 2]

oV );
The isothermal first pressure derivative B (dimensionless parameter) may be

expressed as
HEY
oP J;

Various equations of states have been derived by many scientists. Some important
equations of state that very much hold for materials are as follows:

The third-order Birch-Murnaghan (BM) equation of state is given as [124, 132, 133,
134, 135]:

7 5 2
p=3Bo (Yol (Vo) g, 3 _g)|[Yo) 1
2 \% \% 4 \%
where V, is the equilibrium volume at zero pressure.

The third-order Poirier-Tarantola (PT) logarithmic equation of state is given as [124,
132, 136]:

g e 5

Vinet’s equation of state is given by [124, 130, 131, 132]:
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2.2.6 Elastic Stiffness and Compliance Constants

Crystal is assumed to be a homogeneous continuous medium for elastic
properties [17]. Homogeneity of the body means that mechanical properties are the
same throughout the body [19]. Homogeneous and isotropic terms are not the
same [19]. Hooke’s law is the basic principle for studying elastic properties [16, 17].
As per this law, strains are considered infinitesimally small [16, 17].

Elastic energy density may be expressed as [17]

1 6 6
:EZ Zcuveuev

u=l v=1
Indices are designated as
l=xx,2=vVyy,3=2z,4=yz,5=12x,6=xy

The generalized Hooke's law forms the basis of the mathematical formulation of
elasticity [137]. For small deformations, relationships between strain and stress

components are given below [17].

Xy =Cpey +Cppeyy +Ciaey, +Cpyey, +Cisfyy +Cielyy
Yy =C,.6, + szeyy +Cye,, + C24eyZ +Cys, + CZGeXy
Z,=Ce, + C32eyy +Cgse,, + C34eyZ +Cys, + C36eXy
Y,=C e + C42eyy +Cs8, + C44eyZ +C s, + C46eXy
Z, =Cge, +Cspey +Cyge,, +Csyy, +Cysey +Cygy
Xy =Coqry + Cqyy +Coseyy +Cos€y, + Cosli + Coolyy

where C,,, C,,, C,5,... are elastic stiffness constants

Xy Yy L, Y, 2, and X y are stress components

e e e

yy ! ZZ’e

e, and e, are strain components

XX ! yz !

Elastic stiffness constants C,, are material parameters.

The matrix form of the above relations is given as
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X,] [Cy C, Cs Cu, Cx C
Y, | 1Cy Cp Cpu Cp Cpx C
Z,| |Cy Cy Cy Cu Cy C
YZ C41 C42 C43 C44 C45 C46
Cy Cyp Ci Cy Ci C
Cq Co Cos Co Co C

z

X

X YJ L 61 62 63 64 65 66 Xy

Here, the relation C,, = C,, holds [16, 17].

Therefore, the elastic stiffness matrix C is a 6 x 6 symmetric matrix [138]. As the

relation C, = C,, holds, the upper triangular form of matrix C is shown below [138].

Ch C, Gy Cp Cy Gy
Cp Gy G Cyx Cy

Cyy Gy Gy Gy

Cu Cu Cy

Css Css

L Cee_

This leads to 21 independent elastic stiffness constants instead of 36 elastic stiffness
constants for fully anisotropic material [17]. The highest number of independent
elastic stiffness constants is 21, which can be associated with an elastic material [20].
Depending on the specific symmetry of the crystal, the number of independent
stiffness constants is further reduced [17].

For the elastic compliance constants S [17]

e, =S, X, + 812Yy +S,Z,+S,Y,+S,.Z + SlGXy

e, = Sy X, + 822Yy +S,.Z,+S,,Y, +S,.Z, + SZGXy
e, =5, X, + S32Yy +S5,Z, +S,,Y, +S,. 2, + 836Xy
e, = S X, + S42Yy +S,3Z,+S,Y, +S,.Z, + S46Xy
€, = Sy X, + 852Yy +SgZ, +S.,Y, + S, + SSGXy
&y = S X, + 862Yy +SgZ, +Sg,Y, +SeZ, + SGGXy

where S, S;,, S5,... are elastic compliance constants.

The matrix form of the above relations is given as
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€ Si Su Sz Su S5 S || X«
€y Su S Si Su Si Sy Yy
€2 _ Sai Sy S; Sy S S || 4
€y Sit Sip Sas Su Sus S || Ve
Cux Ssi Ssp Ssy Sss Sss See || x
&y ] L Se1 Sez Ses Ses  Ses  Ses L Xy ]

Here, the relation S, = S, holds [16].

Hence, the elastic compliance matrix S is the 6 x 6 symmetric matrix [138]. As the

relationS,, = S, , the upper triangular form of Matrix S is shown below [138]

vu '’

Hooke’s law states a linear relation between strain and stress [17]. It holds well
enough for many physical phenomena.

2.3 Computation Cost

Computational materials science employs computers to investigate and analyze the
properties of materials. Computational tools, such as specific software, are utilized to
perform computations in materials science. Workstations are computers that are
technically configured with hardware and software to perform specific intensive
computations with high performance. Efficient and fast computations are important
aspects of using workstations regarding their cost-effectiveness. The computation cost
is related to the execution time for specific application processing. In ab-initio
computations for periodic systems, integration in the reciprocal space is a major
consideration [124]. Increasing the number of contracted primitives in the basis set
significantly lengthens the calculation time for the integrals [124]. Monkhorst and
Pack described special k points for Brillouin-zone numerical integrations [139]. These

symmetry-dependent points concern lattice point-group symmetry [139]. This
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Monkhorst-Pack scheme deals in an efficient way for integrating periodic functions in
reciprocal space in solid state calculations [139].

2.4. Useful Software/Tools
Useful software/tools for the present work are as follows:

2.4.1 CRYSTAL Program

The CRYSTAL code [124, 140] can carry out ab-initio computations of the electronic
wave function of periodic systems. It is an ab-initio Hartree-Fock LCAO (Linear
Combination of Atomic Orbitals) program for studying of periodic systems.

The initial version of the software was CRYSTALS88, which was released in 1988
[141, 142]. After that, a modified version CRYSTAL92 was released in 1992 [143].
Then after program versions CRYSTAL95 [144], CRYSTAL98 [145], CRYSTALO3
[146], CRYSTALO6 [147], CRYSTALO9 [148, 149] and CRYSTAL14 [150, 151]
were developed. In 2017, program version CRYSTAL17 [124, 140] was introduced.
Recently, CRYSTAL23 [152, 153] has been released in 2023. Kohn-Sham or Hartree-
Fock Hamiltonians may be implemented [124]. The CRYSTAL program can run for
45 point groups, 99 rod groups, 80 layer groups and 230 space groups [124].

The CRYSTAL program is used for the study of the properties of crystalline
materials [124]. In this section, a few important features of the CRYSTAL Program
are mentioned. The CRYSTAL code provides information about the electronic
structure of periodic systems [124]. Computations are performed within density
functional theory (DFT), Hartree-Fock (HF) or, hybrid method [124]. A Fock matrix-
mixing scheme may be utilized for single-point energy calculation [124]. Also, a
Broyden-Anderson [154, 155] accelerator may be used for convergence [124].

A quasi-Newton algorithm (QNA) [156] is employed for geometry optimizations of
the system [124, 157, 158, 159, 160]. Atomic coordinates and unit cell parameters are
optimized under the full geometry optimization process [124]. Geometry optimization
may be carried out in symmetrized fractional coordinates for atomic locations [124].
By default, there is a relaxation of the lattice parameters and nuclear coordinates for
geometry optimization [124].

The typical part of computed result of the output file from CRYSTAL Code for

geometry optimization is shown below:
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NEIGHBORS OF THE NON-EQUIVALENT ATOMS

N = NUMBER OF NEIGHBORS AT DISTANCE R

ATOM N R/ANG R/AU  NEIGHBORS (ATOM LABELS AND CELL INDICES)
lco 1 2.5303 4.7815 7P 000

lco 1 2.5588 4.8354 9p 000

lco 1 2.5608 4.8393 5P 001

lco 1 2.5811 4.8776 10 P 000

lco 1 3.7381 7.0639 6 P 010

lco 1 3.7470 7.0807 10 P 010

5pP 1 2.1677 4.0964 10 P ) =1

5P 1 2.2211 4.1972 9P 000

5pP 1 2.5303 4.7815 3¢co 010

5p 1 2.5608 4.8393 l1co 00-1

5P 2 3.5717 6.7495 6 P 010 6 P 0 1-1
5pP 1 3.7381 7.0639 2co 010

9P 1 2.1677 4.0964 6 P 010

9p 1 2.2211 4.1972 5P 000

9P A 2.5588 4.8354 lco 000

9P 1 2.5811 4.8776 2co 000

9P 2 3.5655 6.7379 10 P 010 10vp 0 1-1
9P 1 3.7470 7.0807 2cp 010

FINAL OPTIMIZED GEOMETRY - DIMENSIONALITY OF THE SYSTEM 3

(NON PERIODIC DIRECTION: LATTICE PARAMETER FORMALLY SET T0 500) . . . . . .
LATTICE PARAMETERS (ANGSTROMS AND DEGREES) - BOHR = 0.5291772083 ANGSTROM
PRIMITIVE CELL - CENTRING CODE 1/0 VOLUME= 273.312083 - DENSITY 4.274 g/cmA3
A B o ALPHA BETA GAMMA
9.90943135 5.41747907 5.09111440 90.000000 90.000000 90.000000
A A I I T I I I T I I I I T I T I T T A I T A A A T I g T A S A T T A A T A A AT A T A A A AT A A RTAA AT AAAA A A A SR
ATOMS IN THE ASYMMETRIC UNIT 3 - ATOMS IN THE UNIT CELL: 12
ATOM X/A Y/B z/c

AR A R R A A A A A A A A A A A A A A A R A A A A A R A A A A A A A A T R A A A R A A A T A A A A T A A A A A A A A AR A A AR AR R AR ARARARR

171 48 cp 1.510931082204e-01 1.041840904521e-01 2.618673672136E-01
2 F 48 cp -1.510931082204e-01 -1.041840904521e-01 -2.381326327864E-01
3 F 48 cp 3.489068917796eE-01 -3.958159095479e-01 -2.381326327864E-01
4 F 48 cp -3.489068917796e-01 3.958159095479e-01 2.618673672136E-01
3T 15 P 1.226211788989e-01 4.437614399261e-01 -3.926345294005e-01
6 F 15 P -1.226211788989e-01 -4.437614399261e-01 1.073654705995e-01
i F 15 P 3.773788211011e-01 -5.623856007395e-02 1.073654705995e-01
&F 15 P -3.773788211011e-01 5.623856007395e-02 -3.926345294005e-01
9% 15 P -8.709819258754e-03 2.701297597804e-01 -9.123283781300e-02
10F 15 P 8.709819258754e-03 -2.701297597804e-01 4.087671621870e-01
11 F 15 P -4.912901807412e-01 -2.298702402196e-01 4.087671621870E-01
12 F 15 P 4.912901807412e-01 2.298702402196E-01 -9.123283781300E-02

y=

é

BELONGING TO THE ASYMMETRIC UNIT

INFORMATION *#**%* fort.34 #**** GEOMETRY OUTPUT FILE
DIRECT LATTICE VECTORS CARTESIAN COMPONENTS (ANGSTROM)

X b Z
0.990943135018e+01 0.000000000000E+00 0.000000000000E+00
0.000000000000E+00 0.541747906930e+01 0.000000000000E+00
0.000000000000E+00 0.000000000000E+00 0.509111439980e+01

CARTESIAN COORDINATES - PRIMITIVE CELL

ATOM X (ANGSTROM) Y (ANGSTROM) Z(ANGSTROM)

EREEERE LR R LR LR LR TR LR LR R R E R R R R R R R R R R R R LR LR R R R R R R LR LR R R LR R R R R R R LR LR LR LR

1 48 cp 1.497246783394e+00 5.644151293782e-01 1.333196724058e+00
2 48 cp -1.497246783394e+00 -5.644151293782e-01 -1.212360475841e+00
3 48 cp 3.457468891694E+00 -2.144324405272e+00 -1.212360475841e+00
4 48 cp -3.457468891694E+00 2.144324405272e+00 1.333196724058€E+00
5 5 p 1.215106154377e+00 2.404068312562E+00 -1.998947306489e+00
6 15 P -1.215106154377e+00 -2.404068312562E+00 5.466098934100e-01
7 15 p 3.739609520711e+00 -3.046712220883e-01 5.466098934100e-01
8 5 p -3.739609520711e+00 3.046712220883e-01 -1.998947306489e+00
9 15 p -8.630935601707e-02 1.463422319606E+00 -4.644768143243e-01
10 i5 p 8.630935601707e-02 -1.463422319606e+00 2.081080385575e+00
11 i5 p -4.868406319071e+00 -1.245317215045e+00 2.081080385575E+00
12 i5 p 4.868406319071e+00 1.245317215045e+00 -4.644768143243e-01
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*EER 4 SYMMOPS - TRANSLATORS IN FRACTIONAL UNITS

#*%% MATRICES AND TRANSLATORS IN THE CRYSTALLOGRAPHIC REFERENCE FRAME

V INV ROTATION MATRICES TRANSLATORS

1 1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 2 -1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.50
3 3 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.50 0.50 0.50
4 4 1.00 0.00 0.00 0.00 -1.00 ©0.00 0.00 0.00 1.00 O0.50 0.50 0.00
TTTTTTTITT T T I T T T T I TTTTITTTTTITT END TELAPSE 8448 _47 TCPU 6086.93

There are different choices available for optimization, such as ATOMONLY,
FULLOPTG, CELLONLY, ITATOCEL and INTREDUN [124, 161]. There is the
optimization of only atomic coordinates under ATOMONLY option [124]. Under the
CELLONLY option, optimization of only cell parameters is carried out [124]. Under
the INTREDUN option, optimization in redundant internal coordinates may be
performed [124]. The convergence parameter TOLDEG is used for the RMS (root
mean square) of the gradient [124]. The convergence parameter TOLDEX is used for
the RMS (root mean square) of the displacement. The CRYSTAL Code can also
handle geometry optimization with constraints, such as constant volume optimization,
linear constraints between atomic coordinates, fixing lattice deformations, fixing
internal coordinates and partial optimization of atomic positions [124]. Geometry
optimization under external stress may be performed using the keyword
EXTPRESS [124]. Transition state search may be carried out with the CRYSTAL
program [124, 162].
Electronic properties, such as the band structures, the density of states (DOS), etc., are
examined by means of the CRYSTAL Program [124]. Along a specific route in the
BZ, the study of the band structure of a crystal may be carried out [124]. Compton
profiles (CPs) may be computed from B(r) function [124, 163]. The CRYSTAL Code
can compute electronic charge density gradients and charge density maps [124]. The
computation of the EMD (Electron Momentum Density) can be performed from the
density matrix by means of the CRYSTAL program [124, 164, 165]. Wannier
functions (WFs) are calculated from Bloch functions (BFs) [124]. Mulliken
population analysis can be carried out using the keyword PPAN [124].
Closed-shell and spin-polarized computations may be carried out with core pseudo-
potentials [124]. Certain chemical and physical features of molecules, surfaces,
nanotubes and crystals may be investigated with the CRYSTAL program [124]. It is a
powerful tool in physics and solid-state chemistry [124].

The CRYSTAL program can perform computations of vibrational frequency
and phonon dispersion [124, 166, 167]. The CRYSTAL code can compute the
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polarization in ferroelectric crystals [124].

The CRYSTAL Code can explore the dielectric [168, 169, 170], elastic [171, 172,
173, 174], photoelastic [175, 176] and piezoelectric [174, 177, 178] properties of the
materials [124]. Frequency-dependent complex dielectric constants can also be
calculated using the sub-keyword DYNAMIC [124]. Hence, the refractive index and
reflectivity may be calculated [124]. The CRYSTAL code can compute the
polarizability and first hyper-polarizability of the systems as well [124].

Elastic tensor, compliance tensor and seismic velocities may be computed by means
of CRYSTAL Code [124]. A computation of the elastic stiffness constants under a
given pressure can also be performed [124].

The typical force calculation and elastic constant tensor parts of the output file
obtained by means of the CRYSTAL Code are shown below:

EERRER R AL AL R R R LR R AR R AR LA L L E R LR LE L AR AL LA LR AL LA RS REAA S LA A SRR AL LS RS E LSS SRS LS

® FORCE CALCULATION 2
L R I T T T PR R A Y R )

TTITTTTITTTITITTITTTTITTITTTTITTITTITTTT NUMDFG TELAPSE 520.57 TCPU 519.44
INFORMATION **** EXCPOG *%*** EXCH. BIPO BUFFER LENGTH (WORDS) = 0
INFORMATION **** GENPOG **** BIPO BUFFER LENGTH (WORDS) = 388000
TTTTTTTTTITTTITTTTTTTTITTTTTTTTTIT SHELXG TELAPSE 581.25 TCPU 580.11

CARTESIAN FORCES IN HARTREE/BOHR (ANALYTICAL)
X

ATOM Y z
48 -1.397978973650E-05 -2.6747331653756-05 3.915374694319e-05
48 1.397978974538e-05 2.674733165864eE-05 3.915374695007e-05
48 1.397978952511E-05 -2.674733159647e-05 3.915374694208e-05
48 -1.397978951090e-05 2.674733158603e-05 3.915374694063E-05
6.252876411228e-05 1.140667918871e-04 -3.291913787162e-05

-6.
-6.
15 6.
15 5.

252876410517e-05 -1.
252876416557e-05 1.
252876414337e-05 -1.
407249933831e-05 5.

140667918875e-04
14066791867 1e-04
140667918702e-04
047008294223e-05

-3
=3
=3
-6.

291913789738e-05
291913791603e-05
291913791159€e-05
234609861266E-06

Lo~ Wk
=
v

10 15 -5.407249933742e-05 -5.047008294223e-05 -6.234609875033e-06
11 15 -5.407249932965e-05 5.047008301151e-05 -6.234609867928E-06
12 15 5.407249933120e-05 -5.047008299908e-05 -6.234609861711e-06
RESULTANT FORCE 1.043609643148e-14 3.330669073875e-15 -3.286593219798E-12

ATOMIC PART
SYMMETRY ALLOWED FORCES (ANALYTICAL) (DIRECTION, FORCE)

-5.3494663e-05
6 -3.7737621E-05

1 -2.7959579e-05 2
5 2.2813358e-04

3 9.5906702e-05
7 1.0814500e-04

4 1.2505753e-04
8 1.0094017e-04

CELL PART

GRADIENT WITH RESPECT TO THE CELL PARAMETER IN HARTREE/BOHR
ORDER: -D/DAlX, -D/DAlY, -D/DAlz
-D/DA2X, -D/DA2Y, -D/DA2Z
-D/DA3X, -D/DA3Y, -D/DA3Z
0.456109284741e-04 -0.134975691715e-13 -0.293793075442e-14
-0.294177519421e-13 0.851379822819e-04 -0.106590293335e-13
-0.246468752313e-13 -0.834305417907e-14 0.431142029527e-04

STRESS TENSOR, IN HARTREE/BOHRA3:
ORDER: 11 12 13
2522 23
31 32 33
-0.463085386805e-06 0.163286452534e-15 0.128563637849e-15
0.137040118450E-15 -0.472567690763E-06 0.435192447710E-16
0.298286582916E-16 0.591641091659e-16 -0.224893367720E-06

PRESSURE FROM THE STRESS TENSOR,
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IN HARTREE/BOHRA3: 0.386
PRESSURE IN GIGAPASCAL:

85e-06
0.1138e-01

CONVERSION FACTOR: 1 HARTREE/BOHRA3= 29421 GIGAPASCAL
WHEN USING VALUES FOR BOHR RADIUS AND HARTREE

FROM IUPAC WEBSITE, APRIL 2009

ENTHALPY: -2.4569947983521E+04

SYMMETRY ALLOWED FORCES (ANALYTICAL) (DIRECTION, FORCE)

1.7221240e-04 3
TELAPSE

1 1.2358260E-03 2
TTTTTTTITTTITTITITITTTTTITTITTTTTITTIT TOTGRA_C

273.312083

3.2301406e-04
601.33 TcPU

600.18
VOLUME OF THE CELL:
DENSITY OF THE CRYSTAL = 4.2736 g/cmA3

STRAIN MATRIX e -

| 100 |

| 000 |

| 000 |

DISPL ENERGY DELTA E
-0.0100 -2.4569948440E+04 2.5659149833e-04
0.0000 -2.4569948697E+04 0.0000000000E+00
0.0100 -2.4569948223E+04 4.7396548325e-04

ELASTIC TENSOR CONSTANTS

cll 116.69543768 GPa
cl2 = 57.51867582 GPa
cl3d = 48.88650323 GPa
cl4 = 0.00000000 GPa
€15 = -0.00000000 GPa
clé = 0.00000000 GPa
STRAIN MATRIX 2 :
| 000 |
| 010 |
| 000 |
DISPL ENERGY DELTA E
-0.0100 -2.4569948425E+04 2.7206312370e-04
0.0000 -2.4569948697e+04 0.0000000000E+00
0.0100 -2.4569948383E+04 3.1418829167E-04
ELASTIC TENSOR CONSTANTS
c?2l = 57.97871800 GPa
c22 = 92.80185127 GPa
©23 = 46.69850866 GPa
c24 = -0.00000000 GPa
c25 = -0.00000000 GPa
c26 = 0.00000000 GPa

STRAIN MATRIX 3

| 000 |

| 000 |

| 001]|

DISPL ENERGY DELTA E
-0.0100 -2.4569948390E+04 3.0692274959e-04
0.0000 -2.4569948697E+04 0.0000000000E+00
0.0100 -2.4569948481e+04 2.1597814703e-04

ELASTIC TENSOR CONSTANTS

g3l = 49.81710353 GPa
c32 = 47 .26656882 GPa
€33 = 81.86715036 GPa
c34 = -0.00000000 GPa
c35 = -0.00000000 GPa
c36 = -0.00000000 GPa
STRAIN MATRIX 4 :

| 000 |

| 001 |

| 010 |
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DISPL

-0.0100
0.0000
0.0100

ENERGY DELTA E

-2.4569948261E+04
-2.4569948697E+04
-2.4569948261E+04

4.3587907567€e-04
0.0000000000E+00
4.3578615805e-04

ELASTIC TENSOR CONSTANTS

c4l
c42
c43
c44
c45
c46

W wwnn

0.00005917 GPa

-0.00016259 GPa

0.00002460 GPa

34.70221397 GPa

STRAIN MATRIX 5

OO
(=]=J
(==l

DISPL

-0.0100
0.0000
0.0100

0.00000000 GPa
0.00000000 GPa

ENERGY DELTA E

-2.4569948379e+04
-2.4569948697e+04 0.0000000000E+00
-2.4569948379e+04

3.1770384885e-04
3.1758791374e-04

ELASTIC TENSOR CONSTANTS

c51
c52
c53
c54
c55
c56

STRAIN MATRIX

(=0 =
[=1=0
[=1=}=

o nnn

DISPL

-0.0100
0.0000
0.0100

0.00019695 GPa
0.00029213 GPa
0.00040509 GpPa
0.00000000 GPa

25.44113228 GPa
-0.00000000 GPa

6 :

ENERGY DELTA E

-2.4569948334E+04
-2.4569948697E+04 0.0000000000E+00
-2.4569948334e+04

3.6253633152e-04
3.6253876533e-04

ELASTIC TENSOR CONSTANTS

-0.00042912 GPa
-0.00088103 GPa

0.00014724 GPa
-0.00000000 GPa
-0.00000000 GPa
28.97483700 GPa

EEA ST AT AR AAAASA S S A AAAAARAS A A A AL SA LA S ARSI S A A S S S A S S A A AR AA LRSS A A AT AL LA S S
T T I E P T I A AR A A T et R e T PR e I TS T A R s A T R T R T T L R o T

A I T T I T I T T T T I T I T S A T T T T T T I T A T A A T T T A T A A A A A A A A AN A AN AT AT AATSS

FINAL RESULTS START

THE CALCULATION HAS BEEN PERFORMED WITH 3 POINTS AND
A STEP OF
THIS PERMITS TO PERFORM A FITTING UP TO SECOND

0.01000

ORDER

DATA FOR MAXIMUM NUMBER OF POINTS AND ORDER OF FIT

SYMMETRIZED ELASTIC CONSTANTS FOR ORTHORHOMBIC CASE,

116.695

57.749

92.802

49.352 0.000 0.000
46.983 0.000 0.000
81.867 0.000 0.000
34.702 0.000

25.441

ELASTIC MODULI (COMPLIANCE TENSOR), IN TPaA-1

13.5514

-6.0567
17.8955

-4.6933 0.0000 0.0000
-6.6189 0.0000 0.0000
18.8427 0.0000 0.0000
28.8166 0.0000

39.3064

0.000
0.000
0.000
0.000
0.000
28.975

.0000
.0000
.0000
.0000
.0000
.5127

HO000O0

IN GPa
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BULK MODULUS K, SHEAR MODULUS G, YOUNG MODULUS E AND
POISSON RATIO v (ALL IN GPa) ACCORDING TO VOIGT-REUSS-HILL

K_V G_V K_R G_R K_H G_H E_H V_H
66.61 26.98 64.30 25.93 65.46 26.45 69.93 0.322

SEISMIC VELOCITIES BY CHRISTOFFEL EQUATION (km/s)

WAVE VECTOR vp vsl vs2
[ 0.000 0.000 1.000] 4.377 2.850 2.440
[ 0.000 1.000 0.000] 4.660 2.850 2.604
[ 1.000 0.000 0.000] 5.226 2.604 2.440
[ 1.000 1.000 0.000] 5.088 2.653 2.324
[ 1.000 0.000 1.000] 4.856 2.729 2.368
[ 0.000 1.000 1.000] 4.884 2.523 2.168
[ 1.000 1.000 1.000] 4.992 2.549 2.282

R AR A R N R N N A R T A R A A R A A S T A T A T A A A A A A A A A A A A AR RN TR A A RS
FINAL RESULTS END

e L

A A A A A A AT A A A T A T T T A A T A A T AT A A T T A T A T A T A A A T A A A A A AR AR A AN R AR AT AN AR ASNR

The piezoelectric and elastic constants of a crystal can be computed using the
keyword ELAPIEZO [124]. The piezoelectric tensor may be computed using the
keyword PIEZOCON under the numerical Berry phase scheme [124]. Piezoelectric
tensors may also be calculated using the keyword PIEZOCP under the CPHF/KS
method [124]. For the computation of elastic constants under pressure, using the sub-
keyword PREOPTGEOM, pre-optimization is performed [124].

The elasto-optic constants (Pockels tensor) can be computed with the keyword
PHOTOELA by means of CRYSTAL program [124].

Electron transport features, such as the Seebeck coefficient and electron thermal
conductivity, may be investigated by means of the CRYSTAL program [124]. The
electrical conductivity can also be computed [124]. Using the keyword TRANGE,
transport properties are computed at different temperatures [124].

2.4.2 DL Visualize (DLV)

It is a graphical user interface (GUI) to visualize the different data sets of materials
[179]. It is capable of displaying and editing the structures of molecules, periodic
structures of surfaces and crystals [179]. DLV facilitates the graphical user interface
(GUI) to the CRYSTAL Program [124, 140, 179]. Visualization is an effective way of
interpreting data.

DL Visualize is a powerful tool for modeling [179]. DLV provides many features for
displaying and analyzing data and specific editing [179]. It provides the flexibility to
display the type of cell (primitive/conventional cell) and the number of cells in
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periodic structures [179]. Displayed atom radius may be scaled [179]. The Structure
Display Panel of DLV is shown in Fig. 2.1.

e R _

& Structure Display > —|[=]

na 1/V] draw atoms | draw bonds

< b scale 0./5
nb 1l = - draw polyhedra

<l ’ Selection Method s
ne 1 - _‘ select -'

< [m » @ Invert colour of selection

Set Transparency on selection Draw Bonds of Selected Type
cell type
| Set Transparency on unselected
Primitive cell

: "] Label selections
@ Conventional cell

Asymmetric unit - Sujestic Jeten ) Deselect All Bonds
Centre cell about origin [Atoms |ve. overlap 1.00
tolerance 0.0001 | Atom Types « '
4 |1l 12 o
opacity 0.50( (") Lines
< L Tubes
subdiv 16/ pond subdiv 8
4 L [ 4

4 b

bond radius 0.10

4 b

| Draw Real Space Lattice
Qutline polyhedra

property method

line width 0
4 |10 [ 3

| smooth lines

Figure 2.1: DL Visualize Structure Display Panel

Properties (radius, color, charge, type, or spin) and positions of atoms can be
modified [179]. DLV also provides the facility to delete atoms or introduce a new
atom [179]. All the atoms of the same type may also be edited simultaneously [179].
Atoms may also be placed at particular locations [179]. All the atoms of the same type
may be highlighted [179].

Displaying specific planes through DLV is possible [179]. DLV also provides a
specific animation facility [179]. A slab model may be constructed by entering the
Miller indices of particular crystal planes [179]. The lattice may be altered by

executing a supercell technique on the primitive unit cell of a periodic system [179].

27



Chapter 2

Specific vectors can be displayed within the structure [179]. DLV is capable of
displaying the bonds between atoms in different ways [179]. An option is also
available to edit the lattice in certain ways [179]. DLV provides certain facilities for
transforming a displayed model into a non-periodic model [179]. DLV is a useful tool
for extracting important information by visualizing data sets [179].

2.4.3 CRYSPLOT

CRYSPLOT [180] is an online tool for plotting different features of crystals
computed with the CRYSTAL Program [124, 140]. The CRYSPLOT is a web-
oriented totally free tool and it is a user-friendly program [180]. Certain chemical and
physical properties of molecules, surfaces, polymers and crystals may be visualized
with the CRYSPLOT [180]. Vibrational spectra, phonon dispersion, density of states,
band structure, electron momentum density, electron charge density (ECD),
electrostatic potential, topological analysis map, volumetric data, pair correlation
function, etc. may be analyzed with the CRYSPLOT [180].

For plotting the band structure, there is a legend option through which a particular
band line may be displayed or removed [180]. The CRYSPLOT provides the facility
to display the Fermi energy line in the band structure [180]. The y-axis unit may be
displayed in Hartree or electronvolt in the band structure [180]. Shifting of plot values
on the y-axis is also possible [180].

It allows plotting the total and projected density of states for all atoms [180]. The
DOS and band structure can be plotted in a single combined plot [180]. It is capable
of plotting crystal orbital overlap and Hamiltonian populations [180]. The
CRYSPLOT is used for the animation of vibrational modes [180]. It is also useful to
analyze transport properties, such as electron conductivity, Seebeck coefficient,
electron thermal conductivity, etc. [180].

It can also plot the directional Compton profiles and directional autocorrelation
function of EMD (electron momentum density) [180]. Raman and infrared spectra
may be analyzed [180].

The CRYSPLOT can plot reflectance spectra and complex dielectric function spectra
[180]. Energy during the geometrical optimization process and corresponding unit cell
structure may be analyzed by means of the CRYSPLOT program [180]. This tool is
capable of plotting and analyzing the structure of crystals [180]. The CRYSPLOT can
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plot simultaneous multiple datasets of certain properties for comparison [180]. The
CRYSPLOT is an advanced tool for customizing graphs and visualizing computed
properties [180].

244 ELATE

ELATE [181, 182] is an online tool that is used for the exploration of elastic tensors.
Mechanical properties cannot be sufficiently explored fully in the case of the
unavailability of experimental data on elastic quantities [181]. Ab-initio methods can
provide the computed values of elastic constants through computational tools. For
plotting Poisson’s ratio and shear modulus, representation is used, as described by
Marmier [183]. The maximum and minimum values of elastic moduli may be
determined through the ELATE tool [181]. The directions in which the maximum and
minimum values of elastic moduli exist may be determined [181]. These directions
may be different from crystallographic axes. The EALTE Tool also provides the
values of the anisotropy parameters (the ratios of maximum to minimum values of
elastic quantities) [181]. The computational elastic analysis is important for
identifying the materials of requisite usefulness. It is open-source software with a
user-friendly interface [181].

A matrix (6x6)of the elastic stiffness constants is used as input for this

application [181]. Directional variations of Poisson’s ratio, Young’s modulus, linear
compressibility and shear modulus are visualized and analyzed through ELATE
software [181]. Visualizations of 2D and 3D plots of these elastic quantities are
possible by means of this ELATE tool [181]. Thus, it allows visualization of
anisotropic elastic properties [181]. The directional-elastic properties may be explored
with visualization through ELATE software [181].

It also provides the averaging Voigt-Reuss-Hill scheme [184, 185, 186] values for
Young’s modulus, bulk modulus, Poisson’s ratio and shear modulus [181]. The
specific elastic properties are described by elastic tensorial analysis using the ELATE
software [181].

For a typical matrix (6x6) of the elastic stiffness constants, input is processed and

part of the resultant output through the ELATE software is shown as [181, 182].
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ELATE: Elastic tensor analysis

Welcome to ELATE, the online tool for analysis of elastic tensors, developed by
Romain Gaillac and Frangois-Xavier Coudert at CNRS / Chimie ParisTech.

If you use the software in published results (paper, conference, etc.), please cite the
corresponding_paper (J. Phys. Condens. Matter, 2016, 28, 275201) and give the

website URL.

ELATE is open source software. Any queries or comments are welcome at
fx.coudert@chimie-paristech.fr

Summary of the properties (3D material)

Input: stiffness matrix (coefficients in GPa) of

116.69 57.749 49,352 e 2] 5]
57.749 92.802 46.983 5] 2] 5]
49.352 46.983 81.867 a 2] 5]
%] 2] ] 34.702 2] 5]
e 2] e 8  25.441 %]
%] e e %] 2] 28.975

Average properties

Averaging scheme Bulk modulus Young's modulus  Shear modulus

Poisson's ratio

Voigt Ky=66.615GPa E,=71.302 GPa Gy = 26.976 GPa v = 0.32161
Reuss Kr =64.301 GPa Egr=68.566 GPa Gg=25927 GPa vg = 0.32228
Hill Ky =65458 GPa Ej=69.934 GPa Gy=26.451GPa vy =0.32194
Eigenvalues of the stiffness matrix
M k2 3 hq s ]
25441 GPa 28975GPa 34.702GPa 39.885GPa 49331GPa 202.15GPa
Variations of the elastic moduli
Young's tinear Shear modulus Poisson's ratio
modulus compressibility
Emin Emax Pmin Prmax Gmin Gmax ¥min Vmax
53071 77.279 28014 7.5305 20009 34.702
Value GPa GPa TPa-1 TPa-! GPa GPa 0.10161 0.44694 Value
Anisotropy 1.456 2.6881 1.734 4.3988 Anisotropy
0.0000 -0.8603 1.0000 0.0000 -0.0000 -0.0008 -0.0001 1.0000
Axis 0.0000 05098 0.0000 0.0000 0.7071 -0.0006 0.7053 0.0003 Axis
1.0000 0.0000 0.0000 1.0000 O0.7071 1.0000 0.7089 -0.0001
0.0001 -0.0000 0.0001 -0.0003 Sesond
0.7071 1.0000 0.7089 1.0000 e
-0.7071 0.0006 -0.7053 0.0000 .
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2.5 Present Computational Procedure

Properties of the alpha phase of CdP,, the alpha phase of ZnP, and ZnAs, are
investigated with the CRYSTAL package (periodic ab-initio HF and DFT code) [124,
140]. In the present investigation, computations are performed with the DFT
exchange-correlation (XC) functionals. In the present study, calculations are carried
out with the GGA functionals (PBE [187, 188], PBEsol [189, 190] and PWGGA [191,
192, 193, 194, 195, 196]), LDA functionals (LDA PZ [197, 198], LDA VWN [197,
199]), global hybrid functionals (B3PW [191, 192, 193, 200, 201], B3LYP [199, 200,
202, 203] and PBEO [204, 205, 206, 207]) and range-separated hybrid functional
(HSEO6 [187, 188, 208, 209, 210, 211,212, 213 214, 215]).
The computations of geometrical optimization, equation of state [173], electronic and
elastic properties [171, 172, 173] are performed. In this computational work, we have
used the basis sets for cadmium, zinc, phosphorus and arsenic atoms from the
CRYSTAL-Basis Set Library of the Torino group [124, 140]. The basis set of 31
orbitals for the zinc atom [216] and the basis set of 18 orbitals for the phosphorus
atom [217] have been employed. The basis set of 32 orbitals for the arsenic atom is
implemented [216]. For the cadmium atom, a basis set of 36 orbitals is implemented.
The convergence threshold TOLDEE on energy is adopted 107 Hartree. For carrying
out prompt convergence, the BROYDEN accelerator scheme [124, 140, 154, 155] is
utilized. The Fock/Kohn-Sham matrix mixing factor (namely, keyword FMIXING)
[124, 140] is employed as a convergence tool for the computations. An 8x8x8
Monkhorst-Pack k-point mesh [139] is employed for computation. This mesh is
associated with 125 k-points in the irreducible Brillouin zone (IBZ). For analysis of
Mulliken populations [126], the keyword PPAN is used in the CRYSTAL program.
The size of the strain step for the investigation of elastic computations is 0.01.
ELATE software [181, 182] is also utilized for the determination of maximum and
minimum values of various elastic quantities and for plotting various elastic
quantities. The unit cells of a-CdP,, a-ZnP, and monoclinic ZnAs; are drawn with the
help of DL Visualize (DLV) [179]. The band structures and the DOS are drawn using
the CRYSPLOT software [180].
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3.1 Introduction

Crystal structure characteristics are important for predicting the properties of
substances. Theoretical details of crystal structure form the base for experiments. The
crystal structure has a correlation with mechanical properties. The crystal system may
be illustrated by the relationship between crystal structure and mechanical response.
The lattice parameters a, b, ¢ and angle between crystallographic axes are important
for determining the crystal properties. For the orthorhombic crystal a-CdP, [40, 41],

the unit cell is specified by lattice parameters a=b=c, a = =y =90°. For the

tetragonal crystals a-ZnP, [34, 35, 36] and B-CdP; [35, 45], the unit cells are specified
by lattice parameters a=b=c, a = 8 =y =90°. Monoclinic crystals ZnAs; [46, 99]

and B-ZnP, [28, 34] have lattice parameters a #b #C, a =y =90°, B =90°. In this

investigation, the structural properties of the alpha phase of CdP,, the alpha phase of
ZnP, and monoclinic ZnAs; are studied. In this thesis, the structural properties of
I1-VV, compounds are studied with classification, such as a-CdP,, a-ZnP, and ZnAs,,
as it enables a logical illustration. A number of aspects of structural properties are
described, including the lattice parameters, atomic pair distances and equation of
states.

3.2 Methodology

The optimized lattice parameters and fractional coordinates of the conventional cells
have been investigated using initial geometry data of 11-V, compounds by means of
the CRYSTAL Code [124, 140]. The conventional cells of the compounds are plotted
using the DLV software [179]. By means of the Birch-Murnaghan [124, 132, 133,
134, 135], Vinet [124, 130, 131] and Poirier-Tarantola [124, 132, 136] equations of
states, computations are performed [173]. Also, calculations for the isothermal bulk
modulus B, and its first pressure derivative B, are carried out. Atomic pair distances
for the first 06 neighbors are obtained using the Mulliken population scheme [126]
with the keyword PPAN [124]. For the study of structural properties of I1-V;
compounds, computations are carried out with different functionals, such as PBE
[187, 188], PBEsol [189, 190], PWGGA [191, 192, 193, 194, 195, 196], LDA PZ
[197, 198], LDA VWN [197, 199], B3PW [191, 192, 193, 200, 201], B3LYP [199,
200, 202, 203], PBEO [204, 205, 206, 207] and HSE06 [187, 188, 208, 209, 210,

211,212, 213, 214, 215].
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3.3 Results and Discussions
3.3.1 Structural Properties of CdP,

3.3.1.1 Structural Details

Two crystalline phases of cadmium diphosphide, namely, alpha and beta, are reported
[40, 41, 50]. The alpha phase of cadmium diphosphide has an orthorhombic crystal
structure at room temperature [41]. A tetragonal structure is reported for the beta
phase of CdP; [35, 45]. The reported lattice parameters for B-CdP; are a = 5.28 A and
¢ = 19.70 A [35, 45]. The B-CdP; crystal belongs to 422 class symmetry [42]. The
space group of B-CdP; is P432;2 and P4,2;2 [28].

In this investigation, the structural properties of the alpha phase of CdP, are
studied. The space group of a-CdP; is Pna2; [40, 41]. The lattice parameters of
0-CdP, are a = 9.90 A, b = 5.408 A and ¢ = 5.171 A, as reported by Goodyear
et al. [40]. The a-CdP; consists of three nonequivalent atoms, namely, Cd, P(I) and
P(11) [40]. Four formula units are associated with the unit cell of a-CdP, [40]. The
crystal structure of a-CdP, is shown in Fig. 3.1 under the PBE scheme. From
Table 3.1, it is obvious that the lattice parameters and volume of the cell obtained
from LDA functionals are closer to the experimental results. The deviation in unit cell
volume is nearly —1.3% with LDA functionals. With HSE06 and B3LYP functionals,
deviations in unit cell volume are almost 5.2% and 10.2%, respectively. With LDA
VWN functional, deviations in the computed lattice parameters a, b and ¢ with their
respective experimental values are about 0.02%, 0.13% and —1.5%, respectively.
Deviations in the computed values of the lattice parameters using the B3LYP are the
maximum among the functionals mentioned in Table 3.1. Using the B3LYP
functional, deviations in the computed lattice parameters a, b and ¢ with their
respective experimental values are about 2.7%, 3.9% and 3.4%, respectively.
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@

Figure 3.1: The crystal structure of an orthorhombic conventional unit cell of a-CdP..

The lengths a,b and c are the lattice parameters.

Table 3.1: The lattice parameters (a,b and ¢ in A) and volume (V in A®) of the

orthorhombic unit cell of a-CdP; at zero pressure

Scheme a b c \Y

PBEsol™ 10.005 5.492 5160  283.569
PBE 10.140 5577 5.254  297.120
PWGGA 10.124 5572 5.253  296.331
LDA PZ 9.909 5.417 5.091  273.312
LDA VWN 9.902 5.415 5.095  273.178
B3LYP 10.164 5.617 5.345  305.147
B3PW 10.105 5550 5.230  293.332
PBEO 10.089 5535 5201  290.426
HSEO06 10.096 5538 5.209  291.282
Exp®. 9.90 5.408 5.171 276.9
Other work® 286.0

%aRef. [219].
$PRef. [40].
Ref. [72].
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To enhance the understanding of crystal structure, atomic pair distances for the

nearest atoms are described. Table 3.2 illustrates the atomic pair distances between

different atoms in the unit cell of a-CdP,. Under PBE functional, the atomic pair P-P

has the nearest distance of about 2.19 A, whereas the atomic pair Cd-P has the nearest

distance of about 2.61A. The volume of the conventional cell is smaller under the

PBEsol scheme than that under the PBEO scheme, but the atomic pair distance Ps-Py

is greater under the PBEsol scheme than that under the PBEO scheme. The same thing

is true for atomic pair distances Ps-Pg. Thus, despite the fact that the computed
volume under the PBEsol is less than that under the PBEO and HSEQG, the nearest two

P-P pair atoms have a greater atomic distance under the PBEsol functional than under
the PBEO and HSEQ6 functionals.

Table 3.2: Atomic pair distances (in A) for the first six nearest atoms in a-CdP;

Atom Atom Cell

Atomic Pair Distance

A B PBEsol PBE PWGGA LDA LDA B3LYP B3PW PBEO HSEO06
Pz VWN

1Cd 7P (000) 2569 2615 2611 2530 2.530 2.640 2.609 2.601 2.603
9P (000) 2591 2633 2,630 2559  2.558 2.653 2.628 2.622 2.624

5P (001) 2594 2637 2634 2561 2.561 2.675 2.638 2.631 2.633

10P (000) 2.618 2672 2668 2581 2581 2.696 2.657 2.650 2.652

6P (010) 3.768 3.814 3.813 3.738 3.736 3.842 3.807 3.797 3.798

10P (010) 3.777 3.828  3.827 3.747  3.746 3.858 3.822 3.812 3.813

SP 10P (0 1-1) 2183 2195 2194 2168  2.166 2,202 2180 2173 2175
9P (000) 2242 2273 2273 2221 2221 2.281 2246 2235 2.238

3Cd (010) 2569 2615 2611 2530 2.530 2.640 2.609 2.601 2.603

1Cd (00-1) 2594 2637 2634 2561 2.561 2.675 2.638 2.631 2.633

6P (010) 3.608 3.646 3.645 3572 3571 3.676 3.619 3.603 3.608

2Cd (010) 3.768 3.814 3.813 3.738 3.736 3.842 3.807 3.797 3.798

9P 6P (010) 2183 2195 2194 2168  2.166 2,202 2180 2173 2175
5P (000) 2242 2273 2273 2221 2221 2.281 2246 2235 2.238

1Cd (000) 2591 2633 2,630 2559  2.558 2.653 2.628 2.622 2.624

2Cd (000) 2.618 2672 2668 2581 2581 2.696 2.657 2.650 2.652

10P (010) 3598 3.641 3.640 3.566  3.565 3.658 3.609 3.595 3.600

2Cd (010) 3.777 3.828  3.827 3.747  3.746 3.858 3.822 3.812 3.813
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3.3.1.2 Equation of State

An important consideration of pressure derivative in the equation of states is also
discussed here. By means of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet
[124, 130, 131] and Poirier-Tarantola [124, 132, 136] equations of states,
computations [173] for the isothermal bulk modulus B,, first pressure derivative B;
and volume of the unit cell of a-CdP; are performed. The values of bulk modulus,
pressure derivative and volume of o-CdP, are shown in Table 3.3 under various
functionals as computed with the EOS schemes at zero pressure. In most of the cases
in Table 3.3, bulk modulus has a higher value corresponding to a lower unit cell
volume. However, there is no such relationship between volume and pressure
derivative in Table 3.3.

Here, the value of the pressure derivative B, of a-CdP, under the PBEsol is the
lowest, whereas the pressure derivative under the PWGGA is the highest. The typical

estimated value of B; for the alpha phase of CdP; lies in the range from 3.93 to 4.17.
Thus, this range for the alpha phase of CdP, lies in the typical range of By from 2 to 6
for solids [220].
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Table 3.3: At zero pressure, the computed values of bulk modulus B, (GPa), first

pressure derivative B, and unit cell volume Vo (A®) of the a-CdP, under different

functionals

Scheme EOS method B, B, Vo

PBEsol®  Vinet 57.88  3.94 283526
PBEsol* Poirier-Tarantola 57.92  3.94  283.525
PBEsol* Birch-Murnaghan 57.83  3.93  283.528
PBE Vinet 51.99 413  297.066
PBE Poirier-Tarantola 52.05 413  297.065
PBE Birch-Murnaghan 51.94 412  297.067
PWGGA Vinet 52.30 417  296.269
PWGGA Poirier-Tarantola 52.36 417  296.269
PWGGA Birch-Murnaghan 52.25 416  296.271
LDA PZ Vinet 64.37 3.99 273.573
LDA PZ Poirier-Tarantola 64.42 4.00 273.572
LDA PZ Birch-Murnaghan 64.32 3.98  273.575
LDAVWN Vinet 64.52 4.02 273.218
LDA VWN Poirier-Tarantola 64.57 4.03  273.217
LDA VWN  Birch-Murnaghan 64.46 4.02 273.219
B3LYP Vinet 52.74 4.05 304.658
B3LYP Poirier-Tarantola 52.79 4.05  304.658
B3LYP Birch-Murnaghan 52.70 4.04  304.659
B3PW Vinet 56.31 4.16 293.488
B3PW Poirier-Tarantola 56.37 416  293.487
B3PW Birch-Murnaghan 56.25 415  293.489
PBEO Vinet 58.64 4.09  290.604
PBEO Poirier-Tarantola 58.70 410  290.604
PBEO Birch-Murnaghan 58.58 4.09  290.605
HSEO06 Vinet 58.00 409  291.208
HSEOQ6 Poirier-Tarantola 58.06 409  291.208
HSEO6 Birch-Murnaghan 57.95 4.08  291.209

39Ref. [219].
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3.3.2 Structural Properties of ZnP,

3.3.2.1 Structural Details

Two different crystalline phases of zinc diphosphide are represented as a-ZnP; and

B-ZnP, [28, 34]. The alpha phase and beta phase of ZnP, have tetragonal and
monoclinic crystal structures, respectively [28, 34]. Stackelberg et al. [35] and
White [36] reported a tetragonal crystal structure of the alpha phase of ZnP,. The
monoclinic structure of ZnP; has lattice parametersa =8.85 A, b=7.29 A, ¢ =7.56 A
and angle B =102.3° [28, 34]. The space group of monoclinic ZnP, is P2;/c [34]. In

the monoclinic ZnP,, there is tetrahedral coordination for atoms [34]. The tetragonal
structure of zinc diphosphide has lattice parameters a = 5.08 A and ¢ =18.59 A [36].
Each crystalline phase, a-ZnP, and -ZnP,, has 24 atoms in the unit cell [28].

In this work, the structural properties of the alpha phase of ZnP, are investigated.
The conventional cell of a-ZnP; has eight formula units [28, 36]. Hence, its unit cell
has eight Zn and sixteen P atoms [36]. Each Zn atom is bonded to its four nearest P
atoms [36]. Also, each P atom is bonded to its two nearest P atoms and two nearest Zn
atoms [36]. The study of the alpha phase of ZnP, (a tetragonal crystal with space
group P432;2 [28, 36]) is carried out with DFT. The a-ZnP, consists of three
nonequivalent atoms, namely, Zn, P(l) and P(Il) [36]. The computed fractional
coordinates of the conventional cell of a-ZnP, are shown in Table 3.4 under the PBE
scheme. Optimized lattice parameters of the conventional cell have been investigated
using initial geometry data of a-ZnP; and the obtained results are shown in Table 3.5.
Our obtained results fairly agree with the other reported results in Table 3.5. The
volume obtained with LDA functional is the lowest in Table 3.5. The conventional
cell of the alpha phase of ZnP, is depicted in Fig. 3.2 using DLV software [179].
Under the PBE scheme, the crystal structure of the tetragonal unit cell of a-ZnP; is
shown in different planes.
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@vr

Figure 3.2: The crystal structure of a tetragonal unit cell of a-ZnP,. The lengths a,b
and c are the lattice parameters.
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Table 3.4: The fractional coordinates of the nonequivalent atoms in the conventional
cell of a-ZnP,

Atom Fractional coordinates
Present work (PBE scheme) Exp.*
Xla Y/b Zlc Xla Y/b Zlc
Zn 0.1408 -0.3476 0.0511 0.154 —0.366 0.0503
P -0.0191 0.0059 0.1229 -0.010 -0.020 0.1261
P (I -0.1943 0.3209 0.0584 -0.185 0.298 0.0597
%*Ref. [36].

Table 3.5: The lattice parameters (a and ¢ in A) and volume (V in A% of the

tetragonal unit cell of a-ZnP, at zero pressure

Scheme a c \Y
PBEsol 5.031 18.357 464.720
PBE 5.108 18.620 485.908
PWGGA 5.107 18.598 484.962
LDA PZ 4,984 18.155 450.949
LDA VWN 4,981 18.147 450.317
B3LYP 5.170 18.823 503.161
B3PW 5.099 18.624 484.202
PBEO 5.083 18.595 480.410
HSEO06 5.087 18.603 481.402
Exp.* 5.07 18.65
Exp.* 5.08 18.59 479.8
Exp.>" 5.0586 18.506
Exp.” 5.0661 18.532 475.61
Other Work?  5.098 18.604

$'Ref. [35].

%9Ref. [36].

$Ref. [61].

*Ref. [222].

*IRef. [88].
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The atomic pair distances of a-ZnP, are shown in Table 3.6. The nearest P-P pair

distance (about 2.17 A) is less than the nearest Zn-P (about 2.3 A) pair distance for

LDA scheme. In Table 3.6, atomic pair distances between the same pairs under

different functional schemes are the lowest for the LDA VWN scheme and the highest

for the B3LYP scheme. The nearest neighbor distance between the Cd-P atomic pair

in a-CdP; is greater than the nearest neighbor distance between the Zn-P atomic pair

in a-ZnP,. The nearest neighbor distance between the P-P atomic pair in a-CdP; is not

very different from the nearest neighbor distance between the P-P atomic pair in

o-ZnP,.

Table 3.6: Atomic pair distances (in A) for the first six nearest atoms in a-ZnP,

Atom Atom Cell
A B

Atomic Pair distance

PBEsol PBE PWGGA

LDA LDA
PZ VWN

B3LYP B3PW PBEOHSEO06

1Zn  22P (000) 2.327 2.369  2.366
11P (0-10) 2.345 2.383 2.381

9P (000) 2349 2391 2.388

17P (0-10) 2.370 2412 2410

9P (0-10) 3612 3.656 3.654

19P (0-10) 3.623 3.661  3.660

9P 17P (000) 2183 2198 2.198
1P (000) 2251 2275 2275

3Zn (000) 2345 2383 2381

1Zn (000) 2349 2391 2.388

11P (000) 3532 3571  3.569

1Zn (010) 3585 3.656 3.654

17P 9P (000) 2183 2198 2.198
11P (-100) 2251 2275 2275

6zn (000) 2327 2369  2.366

1Zn (010) 2370 2412 2.410

19P (000) 3597 3.634 3.633

3Zn (000) 3.623 3.661  3.660

2.299 2.298
2.320 2.319
2322 2321
2.342  2.341
3.580 3.578
3.594 3.592
2171  2.169
2.234  2.233
2.320 2.319
2322 2321
3.504 3.502
3.546 3.545
2171 2.169
2.234  2.233
2.299 2.298
2342 2.341
3573 3571
3.594 3.592

2.408
2.416
2.426
2.456
3.684
3.684
2.202
2.278
2.416
2.426
3.585
3.684
2.202
2.278
2.408
2.456
3.652
3.684

2.375
2.388
2.396
2.420
3.642
3.644
2.182
2.249
2.388
2.396
3.547
3.642
2.182
2.249
2.375
2.420
3.607
3.644

2.370
2.384
2.391
2414
3.631
3.633
2.176
2.238
2.384
2.391
3.536
3.631
2.176
2.238
2.370
2414
3.594
3.633

2.370
2.385
2.392
2.415
3.633
3.636
2.178
2.242
2.385
2.392
3.540
3.633
2.178
2.242
2.370
2.415
3.598
3.636
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3.3.2.2 Equation of State

By means of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124, 130, 131]
and Poirier-Tarantola [124, 132, 136] equations of states, computations [173] for the
isothermal bulk modulus B, and first pressure derivative B; are performed for
a-ZnP,. In this investigation, with these three EOS schemes, results with the estimated
values of B,, B; and unit cell volume of a-ZnP, at zero pressure are shown in
Table 3.7. All three EOS schemes provide approximately the same estimated values
for B, and B; for the given functional scheme. Under GGA functionals, a reasonable
consistency is found between our respective estimated values of B, & B; and those of
Fan et al. [221]. Under the PBE functional, using the Vinet EQS, the plot of relative
energy E (per unit cell) of a-ZnP, versus its unit cell volume is shown in Fig. 3.3.

0.6 R

(eV/Cell)
o
(6)]
-

w 04

o
w

o o
=N

Relative Energy

o

460 480 500
Cell Volume

Figure 3.3: Under the Vinet EOS scheme, the plot of relative energy per unit cell E
(with respect to minimum energy) of a-ZnP, versus its unit cell volume (A%). The
obtained data points are shown in the volume range of the unit cell from 450 A3 to
510 A°,

The typical estimated range of B; for the alpha phase of ZnP, is 4.34—4.58, which lies
in the general typical range of B; from 2 to 6 for solids [220].
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Table 3.7: At zero pressure, the computed values of bulk modulus B,(GPa), first

pressure derivative B, and unit cell volume V, (A®) of the alpha phase of ZnP, under

different functionals

Scheme EOS method B, B, Vo
PBEsol Vinet 75.33 4.48 464.716
PBEsol Poirier-Tarantola  75.25 4.36 464.731
PBEsol Birch-Murnaghan  75.37 4.57 464.704
PBE Vinet 66.30 4,54 482.967
PBE Poirier-Tarantola  66.42 4,52 482.970
PBE Birch-Murnaghan 66.22 4.54 482.966
PWGGA Vinet 66.63 4.55 484.835
PWGGA Poirier-Tarantola 66.74 4.56 484.833
PWGGA Birch-Murnaghan  66.55 4.55 484.835
LDA PZ Vinet 82.98 4,54 451.306
LDA PZ Poirier-Tarantola  83.12 4.55 451.303
LDA PZ Birch-Murnaghan 82.88 4.53 451.309
LDA VWN Vinet 83.18 4.57 450.614
LDA VWN Poirier-Tarantola  83.33 4.58 450.611
LDA VWN Birch-Murnaghan 83.08 4.56 450.617
B3LYP Vinet 63.97 4.35 502.939
B3LYP Poirier-Tarantola  64.06 4.35 502.938
B3LYP Birch-Murnaghan  63.90 4.34 502.942
B3PW Vinet 70.13 4.41 484.188
B3PW Poirier-Tarantola  70.24 441 484.186
B3PW Birch-Murnaghan  70.05 4.40 484.190
PBEO Vinet 72.68 4.35 480.485
PBEO Poirier-Tarantola  72.79 4.35 480.483
PBEO Birch-Murnaghan 72.60 4.34 480.487
HSEQ6 Vinet 71.90 4.35 481.450
HSEO06 Poirier-Tarantola  72.00 4.36 481.448
HSEO06 Birch-Murnaghan  71.82 4.35 481.452
Other Work™ 76.83
Other Work® 69 483.6
Other Work®" 63.13 4.445
Exp.3n 63.6

$kRef. [96].

*IRef. [88].

SMRef. [221].

"Ref. [67].
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3.3.3 Structural Properties of ZnAs,

3.3.3.1 Structural Details

In this investigation, the structural properties of ZnAs; are studied. The crystal
structure of ZnAs; is shown in Fig. 3.4. Under the PBE scheme, the crystal structure
is shown with the ab plane view, ac plane view, bc plane view and 3D view. The
space group of monoclinic ZnAs; is P2i/c (C;,) [46, 47]. ZnAs; has 08 formula units
in the monoclinic unit cell [46]. Monoclinic ZnAs; has 06 nonequivalent atoms in the
unit cell [47, 50]. With the initial geometry data of ZnAs;, [46, 47], the optimized
lattice parameters have been computed. The lattice parameters (a, b, ¢ and angle )
and volume of the unit cell under different functional methods are shown in
Table 3.8. It is evident from Table 3.8 that volume is the least with LDA functional
and volume is the maximum for the B3LYP functional. Using the PBE functional,
deviations in the computed lattice parameters a, b and c with their respective
experimental values are about —0.33%, —0.27% and 0.21%, respectively. It is evident
from Table 3.8 that deviations in computed angle £ with its respective experimental
value are small. The maximum deviation in angle g is observed for the B3LYP
scheme, which is about 0.034%.

Table 3.8: The lattice parameters (a, b and ¢ in A), angle S (in degrees) and volume V
(in A% of the monoclinic unit cell of ZnAs; at zero pressure

Scheme a b c S \Y
PBEsol™ 9.125 7570 7.909 102.483 533.42
PBE 9.256  7.670 8.027 102.494 556.325
PWGGA 9.249  7.665 8.021 102.498 555.204
LDA PZ 9.035  7.477 7.818 102.425 515.791
LDA VWN 9.028  7.487 7.822 102.415 516.393
B3LYP 9.342 7.741 8.088 102.501 571.051
B3PW 9.244  7.672 8.003 102.487 554.145
PBEO 9.221  7.649 7.977 102475 549.314
HSEO06 9.219 7.650 7.976 102.466 549.228
Exp.* 9.287 7.691 8.010 102.466

%oRef. [223].

PRef. [47].

44



Chapter 3

Figure 3.4: The crystal structure of a monoclinic unit cell of ZnAs,. The lengths a, b
and c are the lattice parameters.

45



Chapter 3

Table 3.9: Atomic pair distances (in A) for the first six nearest atoms in ZnAs;

Atom Atom Cell Atomic Pair Distance
A B PBEsol PBE PWGGA LDA LDA B3LYP B3PW PBEO HSEOQ6
PZ VWN
1Zn 22As (000) 2371 2406 2.403 2343 2344 2431 2408 2402 2.401
23As (001) 2373 2.407 2.405 2344 2346 2432 2409 2405 2.403
17As (0-10) 2412 2449 2446 2378 2383 2476 2452 2447 2.443
13As (000) 2416 2.455 2.452 2382 2386 2486 2.460 2.455 2.450
21As (0-10) 3.717 3.777 3.774 3.671 3.662 3816 3.785 3.772 3.770
21As (000) 3.860 3.899 3897 3814 3833 3930 3.892 3.882 3.886
5Zn 10As (100) 2406 2.444 2.442 2374 2374 2471 2450 2.441 2.440
9As (000) 2420 2.454  2.453 2396 2.393 2487 2.460 2.453 2.458
13As (000) 2442 2482 2.479 2409 2411 2511 2486 2481 2477
20As (000) 2446 2.485 2.483 2412 2417 2515 2489 2483 2.480
24As (000) 3.637 3.679 3680 3.603 3.601 3.709 3.676 3.669 3.667
21As (000) 3.679 3712 3712 3.645 3.651 3.737 3.703 3.697 3.697
9As 6Zzn (110) 2406 2.444 2.442 2374 2374 2471 2450 2.441 2.440
5Zn (000) 2420 2.454 2.453 2396 2.393 2487 2460 2.453 2.458
16As (000) 2461 2.489 2.488 2443 2442 2491 2464 2.453 2.457
17As (000) 2.461 2.489 2.488 2443 2443 2491 2465 2.454 2.456
21 As (000) 3.756 3.804 3802 3730 3.727 3.815 3.773 3.755 3.764
24As (000) 3.761 3.812 3.811 3.732 3.731 3.826 3.782 3.764 3.771
13As 1Zn (000) 2416 2.455 2.452 2.382 2386 2467 2440 2.430 2.450
21As (000) 2435 2462 2.462 2409 2411 2486 2.460 2.454 2.433
5Zn (000) 2442 2482 2.479 2417 2417 2491 2465 2455 2477
12As (001) 2.461 2.489 2.488 2443 2442 2511 2486 2.481 2.457
17As (000) 3.677 3725 3723 3.646 3.645 3.741 3.700 3.686 3.688
8Zn (001) 3.792 3830 3830 3760 3.761 3.857 3.819 3811 3.814
17As 1Zn (010) 2412 2449 2.446 2378 2383 2458 2433 2424 2.443
21As (000) 2427 2455 2.454 2412 2411 2476 2452 2447 2.427
8Zn (001) 2446 2.485 2.483 2412 2417 2491 2464 2.453 2.480
9As (000) 2.461 2.489 2.488 2443 2443 2515 2489 2483 2.456
13As (000) 3.677 3725 3723 3.646 3.645 3.741 3.700 3.686 3.688
5Zn (000) 3.787 3.827 3.827 3755 3.756 3.857 3.817 3.809 3.810
21As 2Zn (000) 2371 2406 2.403 2.343 2344 2431 2408 2402 2.401
3Zn (001) 2373 2.407 2.405 2344 2346 2432 2409 2405 2.403
17As (000) 2427 2455 2.454 2412 2411 2458 2433 2424 2.427
13As (000) 2435 2462 2.462 2417 2417 2467 2.440 2430 2.433
8Zn (001) 3.637 3.679 3.680 3.603 3.601 3.709 3.676 3.669 3.667
5Zn (000) 3.679 3712 3712 3.645 3.651 3.737 3.703 3.697 3.667
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Atomic pair distances for monoclinic ZnAs; for the first 06 nearest atoms are shown
in Table 3.9. The unit cell of ZnAs, has 06 nonequivalent atoms [47, 50], namely
Zn(l), Zn(11), P(1), P(I1), P(I11) and P(IV). In general, the nearest atomic pair Zn-As
distance is smaller than the nearest atomic pair As-As distance. For example, in
Table 3.9, the nearest atomic pair Zn-As distance is about 2.34 A and the nearest
atomic pair As-As distance is about 2.41 A in the LDA functional.

3.3.3.2 Equation of State

The Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124, 130, 131] and Poirier-
Tarantola [124, 132, 136] equations of states [173] are utilized for calculations of the
isothermal bulk modulus B, and first pressure derivative B;. In this work, with these
mentioned EOS schemes, the computed values of B,, B; and volume of the cell of
ZnAs; at zero pressure are depicted in Table 3.10. Under the PBE functional, using
the Vinet EOS, the plot of relative energy E (per unit cell) of ZnAs, versus its

monoclinic unit cell volume is shown in Fig. 3.5.
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Figure 3.5: Under the Vinet EOS scheme, the plot of relative energy per unit cell E
(with respect to minimum energy) of ZnAs; versus its unit cell volume (A%). The
obtained data points are shown in the volume range of the unit cell from 512 A3 to
600 A°.
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Table 3.10: At zero pressure, the computed values of bulk modulus B, (GPa), first

pressure derivative B, and unit cell volume Vo (A% of ZnAs, under different

functionals

Scheme EOS method B, B Vo

PBEsol Vinet 79.88 3.26 531.486
PBEsol Poirier-Tarantola 79.89 3.26 531.484
PBEsol Birch-Murnaghan 79.88 3.25 531.490
PBE Vinet 73.31 4.01 556.253
PBE Poirier-Tarantola 73.37 4.01 556.252
PBE Birch-Murnaghan 73.25 4.00 556.253
PWGGA Vinet 73.96 3.96 553.897
PWGGA Poirier-Tarantola 74.02 3.97 553.896
PWGGA Birch-Murnaghan 73.90 3.96 553.899
LDA PZ Vinet 86.05 2.73 515.507
LDA PZ Poirier-Tarantola 86.03 2.74 515.506
LDA PZ Birch-Murnaghan 86.13 2.72 515.512
LDA VWN Vinet 83.54 2.62 515.248
LDA VWN Poirier-Tarantola 83.52 2.62 515.248
LDA VWN Birch-Murnaghan 83.63 2.61 515.252
B3LYP Vinet 72.38 4.16 569.734
B3LYP Poirier-Tarantola 72.46 4.16 569.733
B3LYP Birch-Murnaghan 72.31 4.16 569.735
B3PW Vinet 75.77 4.20 554.109
B3PW Poirier-Tarantola 75.86 4.20 554.108
B3PW Birch-Murnaghan 75.69 4.19 554.112
PBEO Vinet 79.12 3.98 547.737
PBEO Poirier-Tarantola 79.26 3.98 547.736
PBEO Birch-Murnaghan 79.19 3.98 547.739
HSEO06 Vinet 78.59 3.96 548.669
HSEOQ6 Poirier-Tarantola 78.65 3.96 548.667
HSEO06 Birch-Murnaghan 78.52 3.95 548.671

The typical estimated value of the first pressure derivative for ZnAs; is 2.61-4.20,

which lies in the typical range of By from 2 to 6 for solids [220]. For the given
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functional scheme, all three EOS schemes provide nearly the same estimated values

for By, By and unit cell volumes V. It is evident from Table 3.10 that the computed
value of Bj is the minimum under the LDA scheme and the maximum under the

B3PW scheme.

3.4 Conclusions

This chapter explores the structural properties of a-CdP;, a-ZnP, and ZnAs; by
implementing DFT methods. Our investigation illustrates that atomic pair P-P has the
nearest distance of about 2.17 A, whereas atomic pair Cd-P has the nearest distance of
about 2.53 A in the unit cell of a-CdP, under LDA scheme. The lattice parameters and
volume of the a-CdP, cell computed from LDA functionals are closer to experimental
results. An important feature, such as the pressure derivative in the equation of state,
was also elaborated. The values of bulk modulus and first pressure derivative of
a-CdP, computed with EOS (Vinet, Poirier-Tarantola and Birch-Murnaghan) are in
the range 51.94-64.57 GPa and in the range 3.93-4.17, respectively, at zero pressure
under various functionals. For the alpha phase of CdP,, the first pressure derivative

By lies in the general range of By from 2 to 6 for solids.

For atomic pair distances of 0-ZnP,, the nearest P-P pair distance is about 2.17 A and
the nearest Zn-P pair distance is about 2.3 A under LDA functional. The obtained
nearest neighbor distance between the P-P atomic pair in a-ZnP; is not much different
from the nearest neighbor distance between the P-P atomic pair in a-CdP,. The
nearest neighbor distance between the Zn-P atomic pair in a-ZnP; is less than the
nearest neighbor distance between the Cd-P atomic pair in a-CdP,. The estimated
range of the first pressure derivative Bj for a-ZnP is about 4.34-4.58. The computed
range of bulk modulus B, for a-ZnP, is about 64-83 GPa.

For ZnAs;, deviations in the calculated lattice parameters a, b and ¢ with their
respective experimental values are about —0.33%, —0.27% and 0.21%, respectively,
under the PBE scheme. The value of computed angle S of ZnAs; is about 102.46° at
zero pressure under various functionals. The unit cell of ZnAs; has 06 nonequivalent
atoms, namely Zn(l), Zn(ll), P(l), P(I1), P(ll1) and P(IV). The nearest atomic pair
As-As distance is larger than the nearest atomic pair Zn-As distance in the unit cell of
ZnAs;.
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Under the LDA scheme, the nearest atomic pair Zn-As distance is about 2.34 A and
the nearest atomic pair As-As distance is about 2.41 A in the monoclinic ZnAs;
crystal. The typical calculated value of the first pressure derivative for ZnAs; is
2.61-4.20. The estimated value of bulk modulus for ZnAs, lies in the range
72.31-86.13 GPa.
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4.1 Introduction

Investigation of the density of states and electronic band structures provides

information on the electronic properties of materials. Using special k points of high
symmetry in the reciprocal space, the electronic band structure of the material is
plotted. The electronic band structure provides an energy band gap for the material.
The direct energy band gaps as well as the indirect energy band gaps of
semiconductor compounds may be determined by the electronic band structures. The
total DOS (density of states) and the PDOS (partial density of states) are useful in
predicting conduction properties. Understanding the electronic band structure of a
substance can elucidate its optical properties. The region close to Fermi energy in the
band structure has importance in the deduction of important conclusions about
electronic properties. The position of Fermi energy in the plot between the density of
states and the energy plays an important role in finding out the conduction properties
of solids [13].

Contributions to the electronic states of different shells and orbitals may be
illustrated by the partial density of states (PDOS). Mulliken population analysis may
be utilized to illustrate electronic charge density distribution. Overlap population is
useful in predicting the various features of the nature of chemical bonds in substances.
An analysis of the overlap population may indicate the covalent and ionic characters
of a chemical bond. Mulliken population analysis can also reveal typical atomic
charges. Investigations on the electronic properties of 11-V, semiconductor
compounds will be useful in the development of semiconductor devices for

optoelectronics.

4.2 Methodology

Using the CRYSTAL Code [124, 140], electronic properties are investigated. The
keyword BAND is used for the analysis of electronic band properties [124]. Band
structures are plotted using CRYSPLOT [180]. The plot of the energy of a band state

as a function of a wave vector k (in the Brillouin zone) forms a band structure [50].
In this work, the density of states is plotted using CRYSPLOT [180]. Mulliken
population [126] is analyzed by means of the keyword PPAN [124]. Overlap
population and charge transfer are also studied with different functionals. Properties
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of the density of states are studied using the keyword DOSS [124]. The energy band
range (first and last bands) may be specified for the computation of the density of
states. The energy band gaps of compounds are computed with different functionals.
In the present work, computations are performed with the functionals PBE [187,
188], PBEsol [189, 190], PWGGA [191, 192, 193, 194, 195, 196], LDA PZ [197,
198], LDA VWN [197, 199], B3PW [191, 192, 193, 200, 201], B3LYP [199, 200,
202, 203], PBEO [204, 205, 206, 207] and HSEO06 [187, 188, 208, 209, 210, 211,212

213 214, 215]. In the present investigation, the study of the electronic properties of

o-CdP,, a-ZnP, and ZnAs; is carried out,

4.3 Results and Discussions
4.3.1 Electronic Properties of CdP,

4.3.1.1 Band Structure and DOS

The beta phase of cadmium diphosphide has an energy band gap of about 2.02 eV
[54, 68, 73]. For polarizations EllC and E_LC, Sobolev et al. studied the energy band

gap of B-CdP, [37]. In the present study, the electronic properties of the alpha phase
of CdP;, are investigated. The band structure calculations can provide details about the
energy band gap, Fermi energy, band structures, the valence band maxima, the
conduction band minima, etc. [224]. The band structure of o-CdP, is shown
in Fig. 4.1. The band structure of a-CdP; is drawn along appropriate paths connecting

special points of high symmetry [225].
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Band Structure of Alpha phase of CdP;

E-EFERMI (eV)

k-points

Figure 4.1: The band structure of a-CdP, under the PBE scheme.

The energy band gap of a-CdP, is 1.79 eV under the PBE scheme. The energy value
of 1.79 eV lies in the energy band gap range for semiconductors. The highest point of
the valence band can be seen on the path I'-Z in Fig. 4.1. It is also evident
from Fig. 4.1 that the lowest point of the conduction band exists near the X point.
Hence, it shows the indirect energy band gap of 1.79 eV for the alpha phase of
cadmium diphosphide. For electronic band structure, computations are performed
along high symmetry directions for these special points (namely X, Z,S,U,Y, R, I'etc.)
in the Brillouin zone [4].

Relative to the Fermi energy level, the density of states is plotted from about —5 eV to
10 eV, as shown in Fig. 4.2. On the y-axis, arbitrary units are used for the density of
states, but scaling is the same for all the atoms, which are mentioned in Fig. 4.2.
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Density of States of a-CdP2
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Figure 4.2: The density of states of a-CdP, under the PBE scheme.

The total DOS and the density of states of nonequivalent atoms [Cd, P(1) and P(I1)] of
a-CdP, are shown in Fig. 4.2. Each P(I) and P(Il) atom contributes more in
comparison to the contribution to the density of states by Cd atom. The density of
states lying near the Fermi energy level has importance in determining the electronic
properties of materials. The study of the band structure and the density of states for
a-CdP, was carried out with the PBEsol functional in other work [219].
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4.3.1.2 Mulliken Population Analysis

Table 4.1 shows the charges of nonequivalent Cd and P atoms in a-CdP; crystal. The
charge transfer in the LDA scheme is less than that in other schemes, as mentioned
in Table 4.1. The charge transfer values for Cd, P(I) and P(Il) are 1.055¢, 0.536e and
0.519e, respectively, under the PBE scheme. It is evident from Table 4.1 that the
maximum charge transfer values for Cd, P(I) and P(Il) atoms take place under the
PBEO scheme. The energy band gap values for o-CdP, crystals are shown
in Table 4.2. The energy band gap value is the least for the LDA scheme and the
maximum for the PBEO scheme, as evident from Table 4.2. The overlap population in
a-CdP;, crystal for the first six nearest neighbors is shown in Table 4.3. In Table 4.3,
negative values of the overlap population show antibonding [126]. Positive values of
the overlap population show bonding [126]. For bonding states, overlap population
values for most of the pairs are higher for the LDA scheme, as shown in Table 4.3.
From Table 3.2, it is obvious that pairs 1Cd-7P and 5P-3Cd each have a minimum
distance, and the overlap population has a maximum value, as seen in Table 4.3. The
overlap population for pair 1Cd-7P has a value of 0.148 under the PBE method.

Table 4.1: Charges (in terms of e) of nonequivalent Cd and P atoms of a-CdP;

Scheme Charge Charge Charge

Cd P(I) P (1)
PBEsol™ 46.977  15.522 15.502
PBE 46.945  15.536 15.519
PWGGA 46.960  15.528 15.512
LDA PZ 47.038 15.493 15.469
LDA VWN 47.038 15.493 15.469
B3LYP 46.941 15.533 15.526
B3PW 46.906 15.554 15.541
PBEO 46.879  15.568 15.554
HSE06 46.887  15.564 15.549

“Ref. [219].
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Table 4.2: Energy band gap (in eV) of a-CdP;

PBEsol®® PBE PWGGA LDA  LDA
PZ VWN

B3LYP B3PW PBEO HSE06 Other
Work*®

1.76 1.79 1.78 1.71 1.71

2.90

2.97

3.25

2.60 1.49

“*Ref. [219].
“*Ref. [226, 227].

Table 4.3: Overlap population for the first six nearest neighbors in a-CdP,

Atom Atom Cell

Overlap Population AB

A B PBEsol*® PBE PWGGA LDA LDA B3LYP B3PW PBEO HSEO06
Pz VWN

1Cd 7P (000) 0.154 0.148 0.150 0.164 0.164 0.148 0.146 0.144 0.145
9P (000) 0.139 0.134 0.136 0.145 0145 0136 0132 0.129 0.129

5P (001) 0.141 0.136 0.138 0.148 0.148 0.135 0.132 0.130 0.130

10P (000) 0.135 0.128 0.130 0.144 0.144 0128 0.127 0.125 0.125

6P (010) -0.009 -0.008 -0.008 -0.009 -0.010 -0.007 -0.008 -0.008 -0.008

10P (010) -0.010 -0.008 -0.008 -0.010 -0.011 -0.008 -0.009 -0.009 -0.009

SP 10P (01-1) 0.068 0.076 0.078 0.066 0.066 0.102 0.089 0.087 0.085
9P (000) 0.021  0.030 0.032 0.018 0.018 0.062 0.046 0.044 0.042

3Cd (010) 0.154 0.148 0.150 0.164 0.164 0.148 0.146 0.144 0.145

1Cd (00-1) 0.141 0.136 0.138 0.148 0.148 0.135 0.132 0.130 0.130

6P (010) -0.066 -0.060 -0.059 -0.069 -0.069 -0.056 -0.066 -0.071 -0.069

2Cd (010) -0.009 -0.008 -0.008 -0.009 -0.010 -0.007 -0.008 -0.008 -0.008

9P 6P (010) 0.068 0.076 0.078 0.066 0.066 0.102 0.089 0.087 0.085
5P (000) 0.021  0.030 0.032 0.018 0.018 0.062 0.046 0.044 0.042

1Cd (000) 0.139 0.134 0.136 0.145 0.145 0.136 0132 0.129 0.129

2Cd (000) 0.135 0.128 0.130 0.144 0.144 0128 0.127 0.125 0.125

10P (010) -0.069 -0.062 -0.062 -0.072 -0.072 -0.060 -0.070 -0.074 -0.072

2Cd (010) -0.010 -0.008 -0.008 -0.010 -0.011 -0.008 -0.009 -0.009 -0.009

“Ref. [219].
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4.3.2 Electronic Properties of ZnP,

4.3.2.1 Band Structure and DOS

The energy band gap of beta modification of ZnP, (monoclinic) is nearly
1.33—1.37 eV, as reported by Hegyi et al. [34]. In the present work, the electronic
band structure and the density of states of alpha modification of ZnP, are studied. The
energy band gap (in eV) of the a-ZnP; crystal under different functionals is shown
in Table 4.4. It is clear that the energy band gap value is more than 2.3 eV under the
B3LYP, B3PW, PBEO, and HSEO06 schemes. The value of the energy band gap under
the LDA scheme is 1.36 eV. The band structure of a-ZnP, under PBE scheme is
shown in Fig. 4.3. The value of the energy band gap under PBE functional is 1.54 eV.
The energy band gap value of 1.54 eV corresponds to the IR region. It is evident from
Fig. 4.3 that Brillouin point M is the highest point of the valence band for the
forbidden region. Fig. 4.3 shows an indirect energy band gap of 1.54 eV for the alpha
phase of ZnP,. Huang et al. reported an energy band gap of 1.48 eV for the alpha
phase of ZnP, [88].

Table 4.4: Energy band gap (in eV) of a-ZnP,

PBEsol PBE PWGGA LDA LDA B3LYP B3PW PBEOHSE06 Exp. Exp. Other
PZ VWN Work* Work* Work*
141 154 155 136 136 284 272 2.98 2.33 214 165  1.48

*Ref. [77].
“Ref. [28, 228].
“9Ref. [88].
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Figure 4.3: The band structure of a-ZnP, under the PBE scheme.
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Figure 4.4: The density of states of a-ZnP, under the PBE scheme.

The total density of states and contribution of nonequivalent atoms [Zn, P(l) and
P(11)] of a-ZnP; under the PBE scheme are shown in Fig. 4.4. Near the Fermi energy,

each P(1) and P(I1) atom contributes more to DOS in comparison with Zn atom.
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Density of States of Zn of a-ZnP,
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Figure 4.5: The density of states of the nonequivalent zinc atom of a-ZnP, under the
PBE scheme.

Figure 4.5 illustrates the contribution of orbitals (s, p, d and f ) of nonequivalent
Zn atoms in the density of states. The contribution of f orbitals of Zn atom of a-ZnP;
is minimal to the density of states. The contribution of s orbitals of Zn atom to the
density of states is smaller than the individual contributions of p and d orbitals near
Fermi energy.
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Density of States of P (I) of d-ZnP2
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Figure 4.6: The density of states of the nonequivalent phosphorus atom [P(l)] of

a-ZnP, under the PBE scheme.

The density of states of the nonequivalent P(l) atom of a-ZnP, under the PBE

scheme is shown in Fig. 4.6. For the DOS, the contribution of p orbitals of P(l) atom

of a-ZnP; is much higher than that of s and d orbitals. The contributions of s and d

orbitals of P(l) atom of a-ZnP, are minimal to the density of states near the Fermi

level.

Figure 4.7 shows the density of states of the nonequivalent P(Il) atom of a-ZnP;

under the PBE scheme. The contributions of s and d orbitals of P(ll) atom of a-ZnP,

are minimal to the density of states near the Fermi level. For the DOS, the
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contribution of p orbitals of P(Il) atom of a-ZnP; is much higher than that of other
orbitals of P(I1) atom.

Density of States of P (II) of a-ZnPy
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Figure 4.7: The density of states of the nonequivalent phosphorus atom [P(I1)] of
a-ZnP; under the PBE scheme.

4.3.2.2 Mulliken Population Analysis

Table 4.5 shows the charges of nonequivalent Zn and P atoms in the a-ZnP, crystal.
The amount of charge transfer is relatively small under the LDA functional in
comparison to other functionals, as mentioned in Table 4.5. For the functionals PBEO
and HSEO6, the amount of charge transfer is relatively high in comparison to other
functionals, as mentioned in Table 4.5. With PBE functional, the charge transfer of

62



Chapter 4

nearly 1.07e takes place from Zn atom. Charge transfers of almost 0.52e and 0.54e

take place from P(I) atom and P(I1) atom, respectively.

Table 4.5: Charges (in terms of e) of nonequivalent Zn and P atoms of a-ZnP;

Scheme Charge Charge Charge

Zn P(I) P (Il
PBEsol 28.957  15.510 15.533
PBE 28.932 15.524 15.544
PWGGA 28.945  15.517 15.538
LDAPZ 29.012  15.482 15.506
LDA VWN 29.013 15.482 15.506
B3LYP 28.924  15.530 15.546
B3PW 28.898  15.542 15.560
PBEO 28.874 15.554 15.572
HSE06 28.880  15.551 15.570

Table 4.6: Overlap population for the first six nearest neighbors in a-ZnP,

Atom Atom  Cell Overlap Population AB
A B PBEsol PBE PWGGA LDA LDA B3LYP B3PW PBEO HSEO06
PZ VWN
1Zn 22P (000) 0.180 0.171 0.173 0.188 0.188 0.164 0.166 0.164 0.164
11P (0-10) 0.165 0.158 0.160 0.173 0.173 0.153 0.153 0.151 0.151
9P (000) 0.159 0.152 0.153 0.168 0.168 0.147 0.147 0.145 0.145
17p (0-10) 0.166 0.158 0.160 0.174 0.174 0.150 0.152 0.151 0.151
9 (0-10) -0.008 -0.007 -0.007 -0.009 -0.009 -0.007 -0.007 -0.008 -0.007
19p (0-10) -0.009 -0.008 -0.008 -0.010 -0.010 -0.007 -0.008 -0.008 -0.008
9P 17P (000) 0.028 0.038 0.040 0.028 0.028 0.073 0.060 0.059 0.057
19p (000) -0.031 -0.015 -0.013 -0.034 -0.034 0.030 0.010 0.008 0.005
3Zn (000) 0.165 0.158 0.160 0.173 0.173 0.153 0.153 0.151 0.151
1Zn (000) 0.159 0.152 0.153 0.168 0.168 0.147 0.147 0.145 0.145
11P (000) -0.073 -0.067 -0.066 -0.076 -0.076 -0.065 -0.074 -0.077 -0.076
11P (0-10) -0.032 -0.035 -0.035
1Zn (010) -0.007 -0.007 -0.007 -0.007 -0.008 -0.007
17P 9P (000) 0.028 0.038 0.040 0.028 0.028 0.073 0.060 0.059 0.057
11P (-100) -0.031 -0.015 -0.013 -0.034 -0.034 0.030 0.010 0.008 0.005
6Zn (000) 0.180 0.171 0.173 0.188 0.188 0.164 0.166 0.164 0.164
1Zn (010) 0.166 0.158 0.160 0.174 0.174 0.150 0.152 0.151 0.151
19p (000) -0.058 -0.054 -0.053 -0.060 -0.060 -0.052 -0.060 -0.063 -0.062
3Zn (000) -0.009 -0.008 -0.008 -0.010 -0.010 -0.007 -0.008 -0.008 -0.008
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It is evident from Table 4.6 that in most of the pairs, the magnitude of overlap
population is higher under the LDA schemes than other functionals. Under the LDA
scheme, the maximum value of the overlap population is found between pairs Zn-P,
which is 0.188. Under the LDA scheme, the maximum value of the overlap
population between pairs P-P is 0.028. Under the PBE scheme, the maximum values
of the overlap populations between pairs Zn-P and pairs P-P are 0.171 and 0.038,
respectively. In Table 4.6, the overlap population for atomic pair 9P-1Zn is not
mentioned under PBEsol scheme, as 1Zn is not the first six nearest neighbors of 9P in
a-ZnP,. With different functionals, overlap populations are mentioned only for the

pairs under the first six nearest neighbors in Table 4.6.

4.3.3 Electronic Properties of ZnAs;

4.3.3.1 Band Structure and DOS

The energy band gap of the monoclinic ZnAs; crystal under different functionals is
shown in Table 4.7. Under the PBE scheme, the energy band gap of ZnAs; is
0.82 eV. The functionals B3LYP and B3PW give band gaps of 1.79 eV and 1.83 eV,
respectively. Under the PBEO scheme, the energy band gap of ZnAs; is 2.10 eV. The
computed value of the energy band gap is the minimum with the LDA functional, as
seen in Table 4.7. Fig. 4.8 shows the band structure of ZnAs; under the PBE scheme.
For the electronic band structure of ZnAs,, computations are carried out along high
symmetry directions for the special points (namely A, B, C, D, E, Y and Z) in the
Brillouin zone [124]. It is clear from Fig. 4.8 that the Brillouin zone point Y is the
uppermost point in the valence band region. Relative to the Fermi energy level, the

electronic band structure is plotted from nearly —7 eV to 15 eV, as shown in Fig. 4.8.

Table 4.7: Energy band gap (in eV) of ZnAs;

PBEsol™ PBE PWGGA LDA LDA B3LYP B3PW PBEO HSE06 Exp.”
PZ VWN
~0.78 082 08L 074 075 179 183 210 156 ~1

“"Ref. [223].
“Ref. [50, 99].
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Figure 4.9 shows the density of states of monoclinic ZnAs, under the PBE
scheme. Relative to Fermi energy level, the density of states is plotted from about
—5 eV to 10 eV as shown in Fig. 4.9. On the y-axis, arbitrary units are used for the
density of states, but scaling is the same for all the atoms, which are mentioned
in Fig. 4.9. It illustrates the contributions of nonequivalent atoms [Zn(l), Zn(11), As(l),
As(11), As(111) and As(IV)] of ZnAs;,. In the vicinity of Fermi energy, the contribution
of each nonequivalent As atom is greater than that of each nonequivalent Zn atom.
Fig. 4.10 describes the density of states of the nonequivalent Zn(l) atom of ZnAs;
under the PBE scheme. Near the Fermi energy, the contributions of p and d orbitals of
Zn(I) atom are greater than those of s and f orbitals in Fig. 4.10. The contribution of
the f orbitals of Zn(l) atom is negligible. On the y-axis, arbitrary units are used for the
contribution of orbitals to the density of states, but scaling is the same for all the
orbitals, which are mentioned in Fig. 4.10.

Fig. 4.11 illustrates the density of states of the nonequivalent Zn(ll) atom of
ZnAs; under the PBE scheme. Regarding the contributions of s, p, d and f orbitals of
the nonequivalent Zn(1l) atom, a nearly similar pattern of the nonequivalent Zn(l)
atom is observed. The contribution of the f orbitals of Zn(Il) atom of ZnAs; is also
negligible.
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Band Structure of Monoclinic ZnAs»
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Figure 4.8: The band structure of ZnAs; under the PBE scheme.
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Density of States of Monoclinic ZnAs>
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Figure 4.9: The density of states of ZnAs;, under the PBE scheme.
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Density of States of Zn(I) of Monoclinic ZnAsy
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Figure 4.10: The density of states of the nonequivalent zinc atom [Zn(l)] of ZnAs;

under the PBE scheme.
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Density of States of Zn(II) of Monoclinic ZnAs;
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Figure 4.11: The density of states of the nonequivalent zinc atom [Zn(I1)] of ZnAs;
under the PBE scheme.

69



Chapter 4

Density of States of As(I) of Monoclinic ZnAsy
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Figure 4.12: The density of states of the nonequivalent arsenic atom [As(l)] of ZnAs;

under the PBE scheme.

Fig. 4.12 shows the density of states of the nonequivalent As(l) atom of ZnAs;

under the PBE scheme. Near the Fermi energy, the contribution of p orbitals of As(l)

atom is greater than those of s and d orbitals of As(l) atom in Fig. 4.12.

Fig. 4.13 illustrates the density of states of the nonequivalent As(ll) atom of

ZnAs; under the PBE scheme. The density of states of the nonequivalent As(l11) and
As(IV) atoms of ZnAs, under the PBE scheme are illustrated in Fig. 4.14 and

Fig. 4.15, respectively. The contribution of p orbitals of As(l1l) atom is greater than
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those of s and d orbitals of As(I11) in Fig. 4.14 near the Fermi energy. Similarly, near

the Fermi energy, the contribution of p orbitals of As(IVV) atom is greater than that of s

and d orbitals of As(1V) in Fig. 4.15.
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Figure 4.13: The density of states of the nonequivalent arsenic atom [As(Il)] of

ZnAs, under the PBE scheme.
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Density of States of As(III) of Monoclinic ZnAs)
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Figure 4.14: The density of states of the nonequivalent arsenic atom [As(l11)] of
ZnAs;, under the PBE scheme.
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Figure 4.15: The density of states of the nonequivalent arsenic atom [As(IV)] of
ZnAs; under the PBE scheme.

4.3.3.2 Mulliken Population Analysis

Table 4.8 shows charges of nonequivalent Zn and As atoms in the ZnAs; crystal. It is

evident from Table 4.8 that charge transfer in Zn(l) atom is a little more than in

Zn(I1) atom. Under the LDA scheme, the charge transfer in Zn(l) atom is about 0.9e.

The obtained charge transfer value is higher under the PBEO scheme for ZnAs,. It is

evident from Table 4.8 that charge transfer in As(IV) atoms is little more than in

other nonequivalent As atoms. Charge transfer values for As(l), As(l1) and As(I11) are
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nearly 0.46e, whereas charge transfer value for As(1V) is nearly 0.51e under the PBE

scheme.

Table 4.8: Charges (in terms of ) of nonequivalent Zn and As atoms of ZnAs;

Scheme Charge Charge  Charge Charge Charge Charge

Zn(1) Zn(11) As(l) As(Il) As(lll) As(IV)
PBEsol 29.050  29.072 33.461 33.453 33.459 33.504
PBE 29.042 29.065 33.467 33.457 33.461 33.507
PWGGA 29.054 29.077 33.461 33.452 33.456 33.501
LDA PZ 29.091 29.112 33.438 33.434 33.440 33.486
LDAVWN  29.092 29.113 33.438 33.434 33.439 33.486
B3LYP 29.041  29.065 33.463 33.459 33.463 33.509
B3PW 29.011 29.033 33.480 33.474 33.479 33.523
PBEO 28.986  29.009 33.492 33.485 33.491 33.537
HSE06 28.991  29.014 33.489 33.483 33.489 33.533

Table 4.9 describes the overlap population for the first six nearest neighbors in the
ZnAs; crystal. Under the PBE scheme, the maximum value of overlap population for
Zn-As pair in ZnAs; is 0.196. The maximum value of overlap population for As-As
pair in ZnAs;, is 0.276 under the PBE functional, as shown in Table 4.9. Negative
values of overlap population between pairs Zn-As and As-As indicate antibonding

states.

74



Chapter 4

Table 4.9: Overlap population for the first six nearest neighbors in ZnAs;

Atom Atom  Cell Overlap Population AB
A B PBEsol PBE PWGGA LDA LDA B3LYP B3PW PBEO HSEO06
PZ VWN

1zn  22As (000) 0.202 0.196 0.197 0.208 0.208 0.186 0.187 0.186 0.186
23As (001) 0200 0.195 0.195 0.207 0.206 0.184 0.186 0.184 0.185

17As (0-10) 0.186 0.180 0.180 0.193 0.192 0.170 0.173 0.172 0.173

13As (000) 0.184 0.177 0.178 0.191 0.190 0.167 0.170 0.169 0.170

21As (0-10) 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001

21As (000) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5Zn 10As (100) 0.195 0.187 0.188 0.202 0.202 0.177 0.180 0.180 0.180
9As (000) 0.200 0.194 0.194 0.205 0.206 0.183 0.186 0.186 0.185

13As (000) 0.182 0.175 0.176 0.188 0.188 0.167 0.169 0.167 0.168

20As (000) 0.178 0172 0.173 0.185 0.184 0.163 0.166 0.164 0.166

24As (000) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

21As (000) 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000

9As 6Zn (110) 0195 0.187 0.188 0.202 0.202 0.177 0.180 0.180 0.180
5Zn (000) 0.200 0.194 0.194 0.205 0.206 0.183 0.186 0.186 0.185

16As (000) 0276 0.275 0.273 0.272 0.272 0.282 0.289 0.296 0.295

17As (000) 0275 0274 0.272 0271 0271 0.281 0.289 0.295 0.295

21As (000) 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001

24As (000) 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001

13As 1zn (000) 0.184 0.177 0.178 0.191 0190 0.167 0.170 0.169 0.170
21As (000) 0.274 0274 0.272 0.269 0.269 0.279 0.287 0.293 0.292

5Zzn (000) 0.182 0.175 0.176 0.188 0.188 0.167 0.169 0.167 0.168

12As (001) 0276 0.275 0.273 0.272 0.272 0.282 0.289 0.296 0.295

17As (000) -0.005 -0.003 -0.003 -0.006 -0.006 -0.004 -0.005 -0.006 -0.005

8Zn (001) -0.001 0.000 0.000 -0.001 -0.001 0.000 -0.001 -0.001 -0.001

17As 1zn (010) 0.186 0.180 0.180 0.193 0.192 0.170 0.173 0.172 0.173
21As (000) 0276 0.276 0.274 0271 0.271 0.282 0.289 0.295 0.295

8n (001) 0178 0172 0.173 0.185 0.184 0.163 0.166 0.164 0.166

9As (000) 0.275 0274 0272 0271 0271 0.281 0.289 0.295 0.295

13As (000) -0.005 -0.003 -0.003 -0.006 -0.006 -0.004 -0.005 -0.006 -0.005

5zZn (000) 0.000 0.000 0.000 -0.001 -0.001 0.000 -0.001 -0.001 -0.001

21As 2Zn (000) 0.202 0.196 0.197 0.208 0.208 0.186 0.187 0.186 0.186
3Zn (001) 0200 0.195 0.195 0.207 0.206 0.184 0.186 0.184 0.185

17As (000) 0.276 0.276 0.274 0.271 0.271 0.282 0.289 0.295 0.295

13As (000) 0.274 0274 0.272 0.269 0.269 0.279 0.287 0.293 0.292

8n (001) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

5Zn (000) 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000

4.4 Conclusions

The value of the energy band gap of the alpha phase of CdP, is 1.79 eV under the PBE
functional. The contribution to the density of states of each nonequivalent P(l) and
P(11) atom is greater in comparison to Cd atom for the alpha phase of CdP,. Typical
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values of charge transfer for Cd, P(I) and P(Il) are 1.055e, 0.536e and 0.519e,
respectively, under the PBE scheme for a-CdP,. The value of the energy band gap
under the PBE scheme is 1.54 eV for a-ZnP,. The value of the energy band gap of
1.54 eV corresponds to the IR region of the electromagnetic wave. In the vicinity of
Fermi energy, each P(I) and P(Il) atom contributes more to DOS in comparison with
Zn atom in the a-ZnP,. The contribution of p orbitals of P(I) atom of the alpha phase
of ZnP; to the density of states is much higher than that of s and d orbitals of P(l)
atom near the Fermi level. For the density of states, the contribution of the f orbitals of
Zn atom of a-ZnP; is negligible. Near the Fermi energy, for the DOS, the contribution
of s orbitals of Zn atom is smaller than the contributions of p and d orbitals of Zn
atom in the a-ZnP,. The contribution of the p orbitals of the P(1l) atom of a-ZnP; is
much greater than that of s and d orbitals of P(Il) atom in the vicinity of the Fermi
level. For a-ZnP,, the charge transfer of approximately 1.07e takes place from Zn
atom under the PBE scheme. From P(I) atom and P(ll) atom of a-ZnP,, charge
transfers of approximately 0.52e and 0.54e, respectively, take place under the PBE
scheme. The maximum value of the overlap population between the Zn-P pair for
a-ZnP; is 0.188 under the LDA functional.

The energy band gap of monoclinic ZnAs; is 0.82 eV under the PBE functional.
For ZnAs;,, the contribution of each nonequivalent arsenic atom to DOS is greater
than that of each nonequivalent zinc atom near Fermi energy. The contributions of p
and d orbitals of Zn(l) atom are greater than that of s and f orbitals of Zn(l) atom in
ZnAs;,. The contribution of p orbitals of As(l) atom is greater than that of s and d
orbitals of As(l) atom in ZnAs; near the Fermi energy under the PBE functional. All
As atoms of ZnAs; also follow nearly the same pattern for DOS in the vicinity of the
Fermi level. For ZnAs;, the charge transfer in Zn(l) atom is a little more than in Zn(Il)
atom. The charge transfer in Zn(l) atom in ZnAs; is about 0.9e under the LDA
scheme. The charge transfer values for the nonequivalent As(l), As(Il) and As(l1)
atoms are nearly 0.46e, whereas the charge transfer value for the nonequivalent
As(IV) atom is nearly 0.51e under the PBE functional for ZnAs,. Under the PBE
functional, the maximum value of the overlap population for As-As pair in ZnAs; is
0.275, whereas the maximum value of the overlap population for Zn-As pair in ZnAs;
is 0.196.
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5.1 Introduction

The elastic stiffness coefficients illustrate the response of crystals to stress.
A completely asymmetric crystal has 21 independent stiffness constants Cj; [16].
Elastic stiffness constants are useful for estimating the mechanical strength of the
crystals. Density functional theory has the capability to predict the elastic behavior of
crystals. The estimation of the directional elastic properties of crystals under different
tensile stresses may play an important role in the device application. A correlation
between volume change and applied uniform pressure may be made by means of the
bulk modulus B. Reuss bulk modulus Br and Voigt bulk modulus By may be
represented as [184, 185, 186]

Br =[Si1+ Sy + Sig + 251, + 25,3 + 25,5 (5.1)
where S;; represents elastic compliance constants.
B, = %[C11 +Cypy +Cy3 +2C;, +2C;5 + 2C ] (5.2)

Also, Reuss shear modulus Ggr and Voigt shear modulus Gy may be expressed as
[184, 185, 186]

-1
Gg =15[4(Sy; + Sy, + Sgs) +3(Sss + Ses + Ses ) —4 (S, + Sy3+ S33) | (5.3)

1 1
Gy = E[Cll +Cyp +Cy3—Cp, —Ci3—Cyg] +§[C44 +Cys + Co| (5.4)

Macroscopic polycrystalline shear modulus Gy and bulk modulus By may be
represented by Voigt-Reuss-Hill theory in the following manner [184, 185, 186]

G, :%[GR +Gy] (5.5)
B, :%[BR +By] (5.6)

Also, polycrystalline Poisson’s ratio vy and Young’s modulus E4 may be estimated as
[184, 185, 186]
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vy = 3By =26y (5.7)
2(3B, +Gy)

Sn = 3933H+G£H 2

The mechanical elastic behavior of the material is correlated with various elastic
quantities, such as bulk modulus, Young’s modulus, Poisson’s ratio and shear
modulus. For design calculations for devices, directional shear modulus, Young’s
modulus and Poisson’s ratio are the key parameters. The proper anisotropic
description of elasticity for materials results in noteworthy advantages for the
prediction of preferred orientations of crystals for their technological usages.
Moreover, understanding the anisotropic behavior of materials assists in improving
the durability of the devices, which helps in obtaining the desired electrical and
physical properties. The first principle methods in computational materials science
play a significant role in predicting the elastic anisotropy of solid materials. It is
worthwhile to investigate the anisotropic properties of the materials for

microelectromechanical engineering.
5.2 Methodology

Elastic properties of the alpha phase of CdP,, the alpha phase of ZnP, and monoclinic
ZnAs, are investigated with the CRYSTAL package (periodic ab initio HF and
DFT code) [124, 140]. In the present investigation, computations are performed with
the functionals PBE [187, 188], PBEsol [189, 190], PWGGA [191, 192, 193, 194,
195, 196], LDA PZ [197, 198], LDA VWN [197, 199], B3PW [191, 192, 193, 200,
201], B3LYP [199, 200, 202, 203], PBEO [204, 205, 206, 207] and HSE06 [187, 188,
208, 209, 210, 211,212, 213 214, 215].

The computations of EOS [173] and elastic properties [171, 172, 173] are
performed with the various functionals. Also, the BROYDEN accelerator scheme
[124, 140, 154, 155] is implemented. The keyword ELASTCON is employed to
analyze the elastic properties. The strain step for this work of elastic calculations is
00L The convergence threshold TOLDEE on energy is implemented at 10~® Hartree.
The ELATE program [181, 182] is also utilized for the determination of the maximum

and minimum values of various elastic quantities. The dependence of bulk modulus
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on pressure is also obtained using the keyword EOS [173]. To change the default
values of truncation tolerances, the keyword TOLINTEG is used in the CRYSTAL
CODE [124]. The study of the directional dependence of linear compressibility £,
Poisson’s ratio v, shear modulus G and Young’s modulus E is carried out by plotting
polar graphs using the ELATE program [181, 182]. These graphs are plotted under
the PBE scheme in this work.

5.3 Results and Discussions
5.3.1 Elastic Properties of CdP,

5.3.1.1 Elastic Constants

Feng et al. [72] computed elastic constants (in GPa) for the beta phase of CdP,, which
are C,=926, C, =926, C,=1022, C, =36.2, C, =362, C, =41.1, C, =332, C, =323,
and C,=323. Soshnikov et al. [229] reported the elastic compliance constants (in
10"m?/N) of B-CdP,, which are S,=2327,5,=2288, S, =381, S, =329,
S, =-0504 and S;;=-1.09. For the beta phase of CdP,, the values of the directional

Young modulus (in GPa) are E,,=42.97 and E,, =43.71 [229]. The bulk modulus is

64.5 GPa and the shear modulus is 17.97 GPa for B-CdP;, [229]. Poisson’s ratios vi,
and vq3 are 0.217 and 0.479, respectively, for f-CdP, [229].

The orthorhombic crystal has 09 independent elastic constants Cy1, Ciz, C13, Gy,
Cas, Gy, Cus Cssand Ceg [16]. The necessary and sufficient elastic stability conditions

for the orthorhombic crystal, as stated by Mouhat et al. [230], are expressed by the

following three conditions:

C;>0,C,>0,C; >0, Cyy >0 (5.9
2C,C15C03 +C1CCos — C122C33 - C123(:22 - C223C11 >0 (5.10)
C122 <CyC,, (5.11)

The computed elastic constants Cy1, Ci2, Cj, Caz, Cos, CgyCag, Css and Ceg under

various schemes are shown in Table 5.1. In the present study, the obtained elastic
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stiffness constants of a-CdP, (shown in Table 5.1) satisfy the mentioned elastic
stability conditions. Hence, it asserts the mechanical stability of the a-CdP crystal.
The computed value of the elastic constant C;; is the greatest and Css is the least

among the coefficients Cy1, C12, C3 Co22, Cas, Cy, Cus, Css and Cee. The values of Cy3
and Cy3 are nearly equal. It is evident from Table 5.1 that the LDA functional gives

relatively higher values for Cj;, Ciz, Cs Ci, Caz and Css. In the present

work, Table 5.1 shows that C;; >C,, >C;3>C,, and C,, >Cy >C;.

Table 5.1: Elastic constants C;; (in GPa) of a-CdP; at zero pressure

Scheme Cu Ci Ciz Cx Cas Csz  Cu GCss  Ce

PBEsol* 105.16 50.35 43.41 86.52 41.86 74.23 33.42 2433 27.48
PBE 95.41 43.00 36.37 81.15 36.27 69.15 3274 2392 27.21
PWGGA 95.63 42.81 36.51 8212 36.28 69.58 3198 23.13 26.98
LDA PZ 116.70 57.75 49.35 92.80 46.98 81.87 34.70 2544  28.98

LDA VWN 116.75 57.43 4931 9286 46.87 8211 3479 25.60 28.99

B3LYP 96.58 40.13 35.08 86.08 35.63 76.68 36.26 26.26  29.04
B3PW 103.81 45.01 3891 8859 38.23 76.48 3551 2590 29.86
PBEO 107.59 4761 4143 90.36 40.35 78.18 3545 26.04 30.19
HSE06 106.40  47.24 4097 89.29 39.89 77.22 35.01 25.65 29.66

Other Work®  101.3 31.1 37.7 914 325 87.3 37.4 282 190

“Ref. [219].
SPRef. [72].

Elastic compliance constants Si1, Si2, Sy S22, S23, Sg Sas, Sss and Ses of a-CdP; at

zero pressure are shown in Table 5.2. The values of elastic coefficients S;,, Si3 and
So3 are negative. It is obvious from Table 5.2 that the elastic compliance constants S;

of a-CdP, at zero pressure follow the relation Ssg5>Sg>S,>S5>S,>S;. Elastic

compliance constant Sp; has the most negative value among elastic compliance

constants Si,, S13 and Sos.

80



Chapter 5

Table 5.2: Elastic compliance constants S;; [in (TPa) "] of a-CdP; at zero pressure

Scheme Si Siz Si3 S Sas Sa3 Sus Sss Ses
PBEsol™* 1446 596 511 1834 -6.86  20.33  29.92  41.10 36.38
PBE 1491 574 483 1831 -658 2046 3054 4182 36.76
PWGGA 1481 -557 487 17.92 —642 2027 3127 4323 37.06
LDA PZ 1355 -6.06 -4.69 17.90 -6.62  18.84 2882  39.31 3451
LDAVWN 1348 -597 469 17.77 -656  18.74  28.74  39.07 34.50
B3LYP 1382 -474 412 16.01 -527  17.38 2758  38.09 34.43
B3PW 13.40 -493 -435 1621 -559  18.09  28.16  38.61 33.49
PBEO 1320 -498 443 1626 -575 1811 2821 3840 33.13
HSE06 13.38 508 -4.47 1649 -583 1833 2857 3899 33.71
>Using Ref. [219].
Table 5.3: Young’s modulus E (in GPa), bulk modulus B (in GPa) and shear
modulus G (in GPa) of a-CdP; at zero pressure
Scheme Bv Br By Gv Gr Gh Ev Er En
PBEsol™ 59.68 57.81 58.75 25.73 2474 2523 6750 64.94 66.22
PBE 53.00 51.65 5232 25.44 2456 25.00 65.80 63.61 64.71
PWGGA 53.17 51.85 5251 2520 2443 2481 65.29 63.33 64.31
LDA PZ 66.62 64.30 6546 26.98 2593 26.45 71.30 68.57 69.93
LDAVWN 6655 6428 6542 27.08 26.05 26,57 7154 68.85 70.20
B3LYP 53.45 5278 53.11 28.21 27.49 2785 7197 70.28 71.12
B3PW 57.02 5574 56.38 28.04 27.22 27.63 7227 70.23 71.25
PBEO 59.43 57.97 5870 28.12 27.27 2769 7286 70.71 71.79
HSEO06 58.79 57.32 58.06 27.72 26.88 27.30 71.86 69.73 70.80
>Using Ref. [219].

Various elastic quantities Young’s modulus E, bulk modulus B and shear

modulus G of a-CdP;, are computed by means of the ELATE program [181, 182]

using computed elastic constants Cj;. These elastic quantities are shown in Table 5.3.
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It is observed that E,>B,>G,. It is evident from Table 5.3 that the LDA functional

gives relatively higher values for By. The values of E4 and Gy obtained with the
schemes B3LYP, B3PW, PBEO, HSEQ6 are relatively higher in comparison with the
respective values of Ey and Gy obtained with the schemes PBEsol, PBE, PWGGA,
LDA PZ and LDA VWN.

Poisson’s ratios (v, vk and vy) of a-CdP, at zero pressure are computed by
means of the ELATE program [181, 182] using obtained elastic constants. These
values of Poisson’s ratio under different schemes are shown in Table 5.4. It is evident
from Table 5.4 that the LDA functional gives relatively higher values for Poisson’s
ratio v. Table 5.4 shows that the obtained values of Poisson’s ratios are around 0.3.
Thus, computed values of Poisson’s ratios lie in the theoretically predicted
range [137] for materials.

Table 5.4: Poisson’s ratio v (unitless) of a-CdP, at zero pressure

Scheme 14V, VR VH
PBEsol™® 0.312 0.313 0.312
PBE 0.293 0.295 0.294
PWGGA 0.295 0.296 0.296
LDA PZ 0.322 0.322 0.322
LDA VWN 0.321 0.321 0.321
B3LYP 0.276 0.278 0.277
B3PW 0.289 0.290 0.289
PBEO 0.296 0.297 0.296
HSE06 0.296 0.297 0.297

>*Using Ref. [219].

The brittleness and malleability properties of polycrystalline substances may be
correlated with the ratio of bulk modulus B to shear modulus G [231]. The malleable
nature of a polycrystalline substance is likely to be predicted for a ratio B/G greater
than tentatively 1.75 [231]. Table 5.3 shows that the value of Bu/Gy is about 2.1-2.2.
Hence, it predicts the malleable nature of the alpha phase of CdP;.

Using the keyword EOS, variation of bulk modulus with pressure is obtained with
the PBE functional under the Vinet [124, 130, 131] scheme. The variation of bulk
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modulus with pressure is plotted in Fig. 5.1. The variation of bulk modulus with
pressure is nearly linear in the given range of pressure, as depicted in Fig. 5.1. To our
best knowledge, there is no other theoretically or experimentally reported bulk

modulus data for a-CdP, at higher pressures for comparison with our investigation.

Figure 5.1: Computed bulk modulus B of a-CdP; as a function of applied pressure P.

5.3.1.2 Elastic Anisotropy

In terms of elastic compliance constants S;;, Young’s modulus E along the unit vector
l; for the orthorhombic crystal may be represented as [16]
E =[Sy, + 207138y, + 2131385+ 2071385 + 1S, + 13 S5q + 171385 + 12135, + |12|22566]‘1
(5.12)
where the direction cosines are denoted by |4, I, and Is.
The directional linear compressibility g along the unit vector I; for orthorhombic

crystal may be represented as [16]

B =(Su+Sp,+S13)IF +(Si2+ Sy +5)15 +(Si3+ S35+ S5) 15 (5.13)
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The elastic anisotropy may be represented in various ways. The degree of elastic
anisotropy may be introduced by the following expression [232, 233]

_GV_GR

= 5.14
G, + Gy ( )

As

The value of Ag is zero in the case of elastic-isotropic materials. For defining the
degree of elastic anisotropy for all crystalline symmetry, Ranganathan et al. [234]
introduced the term universal elastic anisotropy index A" as

BV GV

—Y 4+ 5=
BR GR

AY = -6 (5.15)

Elastic isotropic materials have a value of zero for index A" [234]. Values of AY
greater than zero reflect the degree of elastic anisotropy in materials. Minimum and
maximum values of linear compressibility (fmin and Smax), Poisson’s ratio (vmin and
vmax), shear modulus (Gmin and Gmax) and Young’s modulus (Emin and Emax) Of the
a-CdP, crystal are shown in Table 5.5. These elastic quantities are calculated by
means of the ELATE program [181, 182] using computed values of the a-CdP,
crystal.

From Table 5.6, it is evident that the percentage variation of Poisson’s ratio
relative to its minimum value is higher among the corresponding percentage
variations of Young’s modulus, linear compressibility, shear modulus and Poisson’s
ratio for o-CdP,. It is also clear that almost all the anisotropy indices shown
in Table 5.6 have relatively high values under the PBEsol and LDA schemes. Under
the B3LYP scheme, almost all the mentioned anisotropy indices have relatively low
values.

Polar graphs for the directional-dependent Young’s modulus of a-CdP, at zero
pressure under the PBE scheme are depicted in Fig. 5.2 and Fig. 5.3 using the ELATE
program [181, 182].
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Table 5.5: Minimum and maximum values of linear compressibility g [in (TPa)™],

Poisson’s ratio v (unitless), shear modulus G (in GPa) and Young’s modulus E (in
GPa) of a-CdP;

Scheme G G E E

min max min max ﬂmin ﬂmax V min Vmax

PBEsol* 19.09 33.42 49.20 73.14 3.41 836 0.091 0.418

PBE 19.26 32.74 48.89 71.53 4.34 9.04 0.088 0.391
PWGGA 19.59 31.98 49.32 71.00 4.37 8.99 0.104 0.387
LDA PZ 20.01 34.70 53.07 77.28 2.80 7.53 0.102  0.447
LDAVWN  20.15 34.79 53.36  77.37 2.82 749  0.103 0.443
B3LYP 22.77 36.26 57.55 79,51 4.96 7.98 0.094 0.359
B3PW 21.99 35.51 55.30 78.33 412 8.14 0.099 0.376
PBEO 21.80 35.45 55.23 78.62 3.80 793 0.105 0.387
HSEO06 21.52 35.01 5454  77.60 3.82 8.04 0.104 0.386

Ref. [219].

Table 5.6: Elastic anisotropy parameters: ratio of maximum to minimum values of
Young’s modulus E, linear compressibility , shear modulus G and Poisson’s ratio v

for a-CdP,. Elastic anisotropy parameters Ag and A" for a-CdP;

Scheme Anisotropy

Emax ~ Bmax  Gmax  Vimax

E min Bmin Gmin Vmin Ao A
PBEsol™ 1.49 245 175 459 0.020 0.234
PBE 1.46 2.08 1.70 444 0.018 0.205
PWGGA 1.44 2.06 1.63 3.70 0.016 0.184
LDA PZ 1.46 2.69 1.73 440 0.020 0.238
LDA VWN 1.45 2.65 1.73 432 0.019 0.233
B3LYP 1.38 1.61 1.59 3.83 0.013 0.143
B3PW 1.42 1.98 1.62 3.82 0.015 0.173
PBEO 1.42 2.09 1.63 3.70 0.015 0.181
HSE06 1.42 2.10 1.63 3.70 0.015 0.182

>9Using Ref. [219].
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Figure 5.2: Polar graphs®" (2D view) for the directional-dependent Young’s modulus
E (in GPa) of a-CdP; at zero pressure under the PBE scheme.
"Using the ELATE program [181, 182].
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Figure 5.3: Polar graph® (3D view) for the directional-dependent Young’s modulus E
(in GPa) of a-CdP;, at zero pressure under the PBE scheme.
SiUsing the ELATE program [181, 182].

The directional Young’s modulus varies from a minimum value of 48.89 GPato a
maximum value of 71.53 GPa under the PBE scheme. Polar graphs for the
directional-dependent linear compressibility S of a-CdP, at zero pressure under the
PBE scheme are shown in Fig. 5.4 and Fig. 5.5 using the ELATE program [181, 182].
The directional shear modulus varies from a minimum value of 19.26 GPa to a
maximum value of 32.74 GPa under the PBE method.
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Figure 5.4: Polar graphs” (2D view) for the directional-dependent linear
compressibility g [in (TPa)™] of a-CdP; at zero pressure under the PBE scheme.

SiUsing the ELATE program [181, 182].
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Figure 5.5: Polar graph®™ (3D view) for the directional-dependent linear

compressibility g [in (TPa)™ ] of a-CdP; at zero pressure under the PBE scheme.

Linear Compressibility

SkUsing the ELATE program [181, 182].

The variation of directional-dependent Poisson’s ratio and shear modulus of
a-CdP, at zero pressure under the PBE scheme in polar form are illustrated in
Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9. These polar graphs are plotted as per the
convention used for the ELATE program [181, 182]. Variations of Young’s modulus

and linear compressibility were also plotted with the PBEsol scheme in other

work [219].
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Figure 5.6: Polar graphs® (2D view) for the directional-dependent shear modulus G
(in GPa) of a-CdP;, at zero pressure under the PBE scheme.
SlUsing the ELATE program [181, 182].
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Shear Modulus

Figure 5.7: Polar graph®™ (3D view) for the directional-dependent shear modulus G
(in GPa) of a-CdP;, at zero pressure under the PBE scheme.
™Using the ELATE program [181, 182].
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Figure 5.8: Polar graphs™ (2D view) for the directional-dependent Poisson’s ratio v
(unitless) of a-CdP;, at zero pressure under the PBE scheme.
*"Using the ELATE program [181, 182].
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Poisson’s Ratio

Figure 5.9: Polar graph® (3D view) for the directional-dependent Poisson’s ratio v
(unitless) of a-CdP, at zero pressure under the PBE scheme.
*°Using the ELATE program [181, 182].

5.3.2 Elastic Properties of ZnP;

5.3.2.1 Elastic Constants

The bulk modulus and shear modulus of 3-ZnP, are 68 GPa and 44 GPa, respectively,
as reported by Huang et al. [88]. Young’s modulus and Poisson’s ratio of the beta
phase of ZnP, are 110 GPa and 0.23, respectively [88]. The zero pressure elastic
constants (in GPa) of B-ZnP, are C;; =117, C,, =126, C4 =136, C,, =30, C;; =50,
Ce =54, C, =50, C ;=45 C, =22, C;=-0.03 C,,=-0.3 C;; =—0.4andC,; =0 [88].

In this work, an investigation of the elastic properties of the alpha phase of ZnP, is
carried out. The crystal of the tetragonal (I) class (4/mmm) has six independent elastic
stiffness constants Ci;, Ciz, C Ca3, Caq and Cgs [16]. In the present study, the

obtained elastic stiffness constants Cj; of a-ZnP, are shown in Table 5.7 along with
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theoretical [88, 235] and experimental data [229]. As stated by Mouhat et al. [230],
necessary and sufficient elastic stability conditions for the crystal of the tetragonal (1)

class (4/mmm) are expressed by the following four conditions:

Cy > ‘Clz‘ (5.16)
2Cf <Cqy(Cy +Cyy) (5.17)
Cyy >0 (5.18)
Cee >0 (5.19)

In this study, the obtained elastic stiffness constants (shown in Table 5.7) satisfy
these necessary and sufficient elastic stability conditions for the crystal of the
tetragonal (I) class (4/mmm). Thus, it asserts the mechanical stability of the a-ZnP;
crystal. At zero pressure, it is obvious that the obtained elastic stiffness constants Cj;

are in fair agreement with the experimental values [229].

Table 5.7: Elastic constants Cj; (in GPa) of a-ZnP; at zero pressure

Scheme Cu Cp Cis Css Cus Ces

PBEsol 11790 55.65 51.00 129.63 47.57 66.64
PBE 108.21 46.66 42.39 118.78 4492 62.04
PWGGA 109.24 46.98 42.70 119.63 45.26 62.65
LDA PZ 128.01 62.21 57.15 139.06 50.72 71.60
LDA VWN 128.34 62.35 57.29 13940 50.85 71.79
B3LYP 110.24 4225 38.22 120.05 46.07 62.85
B3PW 115.67 48.82 44.68 126.75 47.06 65.09
PBEO 11795 51.43 4744 129.75 4729 65.71
HSE06 116.65 50.95 46.90 128.33 46.93 64.99

Other Work™ 116.48 54.18 48.12 126.37 44.34 59.42
Other Work™ 118 53 45 123 45 60
Exp.” 102.1  30.76 115.7  42.85 52.08

*PRef. [235].
>Ref. [88].
Ref. [229].
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For the crystal of the tetragonal (1) class (4/mmm) Bg, By, Gr and Gy may be
represented in the following way [184, 185, 186]

Br =[2S1 + g+ 25, +4S,] (5.20)

B, = %[ZC11 +Cy3+2C;, +4C 5] (5.21)

G = 15[ 4(2Sy, +Sg) +3(2S44 + Seo ) — 4(Sy, + 255 | (5.22)
1 1

Gy = E[ZCM +Cg3—Cp, —2C;5 ]+ E[ZCM +Cos ] (5.23)

Elastic compliance constants Sj; [in (TPa)™] of a-ZnP, at zero pressure are shown

in Table 5.8. The computed elastic moduli of a-ZnP, are reported in Table 5.9.
The orthorhombic phosphorus crystal has a Young’s modulus of 30.4 GPa [29] and a
bulk modulus of nearly 36 GPa [236]. The Young’s modulus and bulk modulus for
zinc crystals are 92.7 GPa and 60.6 GPa, respectively [29]. Table 5.9 shows that the
respective computed values of Young’s modulus E and bulk modulus B of a-ZnP, are
higher than those of its constituent elements. In view of resisting structural
deformation, the typical bulk modulus of ~66 GPa of a-ZnP, reflects its considerably

ample mechanical strength.

It is evident that the value of B/G is ~1.55 at zero pressure under the PBE scheme.
Hence, it suggests the brittle nature of a-ZnP,. Our computed ratio c/a at zero
pressure is 3.645 under PBE scheme, which is almost equal to the experimental value
of 3.659 [36]. Hence, it is obvious that the computed values of Poisson’s ratio lie in
the theoretically predicted range [137] for materials. Now, we illustrate the various
elastic properties with different functional schemes. It is evident from Table 5.7 that

computation with the LDA functional gives relatively high values of coefficients C;,

Coo, C13, Ca3, Cus and Ceg for a-ZnP5.
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Table 5.8: Elastic compliance constants S;; [in (TPa)™ ] of a-ZnP; at zero pressure

Scheme S11 S12 Si3 Ss33 Sus Ses

PBEsol 11.78 -4.28 -2.95 10.04 21.02 15.01
PBE 12.14 -411 -2.86 1046 2226 16.12
PWGGA 12.01 -4.05 -2.84 1039 2210 15.96
LDA PZ 11.09 -411 -2.87 955 19.72 13.97
LDA VWN 11.06 -4.10 -2.86 953 19.67 13.93
B3LYP 1126 -3.45 -248 991 2171 15091
B3PW 1124 -372 -2.65 976 2125 1536
PBEO 1123 -3.80 -2.71 9.69 2115 1522
HSE06 1136 -3.86 -2.74 9.80 21.31 15.39
Other Work™ 125 -15 469 12.64 23.34 19.2

*Ref. [229].

Table 5.9: Young’s modulus E (in GPa), bulk modulus B (in GPa) and shear
modulus G (in GPa) of a-ZnP, at zero pressure

Scheme Bv Br Bx Gv Gr GH Ev Er En
PBEsol 75.64 7559 75.61 46.21 4332 4477 11517 109.12 112.16
PBE 66.45 66.41 66.43 43.96 41.64 42.80 108.05 103.33 105.70
PWGGA 66.99 66.95 66.97 4435 4202 43.18 108.99 104.25 106.63
LDA PZ 83.12 83.09 83.10 49.18 4594 4756 123.24 116.38 119.83
LDA VWN 83.33 83.29 83.31 49.31 46.07 47.69 12355 116.68 120.14
B3LYP 64.21 64.18 64.20 4579 43.94 44.87 110.98 107.33 109.17
B3PW 7050 70.45 70.47 4650 4430 454 11436 109.87 112.12
PBEO 73.14 73.08 73.11 46.68 4437 4553 11548 110.71 113.11
HSEOQ6 7234 7229 7232 4623 4393 45.08 11433 109.59 111.97
Other Work™ 73.35 73.33 73.34 4355 41.66 42.61 109.06 105.08 107.07

SRef. [235].

Table 5.8 shows that S;, and Si3 have negative values. Young’s modulus (Ev, Er
and Ey), bulk modulus (By, Br and By), and shear modulus (Gy, Gr and Gy) of
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a-ZnP, are reported in Table 5.9. Poisson’s ratio v (unitless) of a-ZnP, at zero
pressure is illustrated in Table 5.10. Using the obtained elastic constants, these elastic
quantities (shown in Table 5.9 and Table 5.10) are calculated by means of the
ELATE program [181, 182]. It is also obvious that the values of elastic quantities
obtained in Table 5.9 and Table 5.10 have relatively high values under the LDA
functionals.

Based on ultrasonic measurements, according to Soshnikov et al., the calculated
shear modulus and bulk modulus of the alpha phase of the ZnP, are 35.7 GPa and
62.91 GPa [229]. According to Huang et al. [88], the computed values of shear
modulus, bulk modulus, Young’s modulus and Poisson’s ratio of a-ZnP; are 44 GPa,

72 GPa, 110 GPa and 0.24, respectively.

Table 5.10: Poisson’s ratio v (unitless) of a-ZnP, at zero pressure

Scheme W VR VH

PBEsol 0.246 0.259 0.253
PBE 0.229 0.241 0.235
PWGGA 0.229 0.240 0.235
LDA PZ 0.253 0.267 0.260
LDA VWN 0.253 0.267 0.260
B3LYP 0.212 0.221 0.217
B3PW 0.230 0.240 0.235
PBEO 0.237 0.248 0.242
HSEO6 0.237 0.247 0.242

5.3.2.2 Elastic Anisotropy

The a-ZnP; crystal has directional-dependent variations in elastic quantities, such as
shear modulus G, Young’s modulus E and Poisson’s ratio v. In terms of elastic
compliance constants Sjj, Young’s modulus E along the unit vector I; for the crystal of

the tetragonal class (4/mmm) may be represented as [16]

-1
E= [lg‘s33 (1 +13) 81y +1213 (Ses + 28y, )+ 1 (113 ) (2815 + S, )} (5.24)
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where the direction cosines are denoted by |4, I, and Is.

The directional linear compressibility S along the unit vector I; ,for all classes of

tetragonal crystal systems, may be represented as [16]
ﬂ:(311+513+312)—(511+512—533_313)|§ (5.25)

Along different directions, the directional Young’s modulus and linear
compressibility for a-ZnP, at zero pressure under the PBE scheme are illustrated in
Table 5.11.

Table 5.11: Under the PBE method, the directional Young’s modulus and linear
compressibility for a-ZnP, at zero pressure

E[lOO] E[0101 E[001] E[1101 ﬂ[lOO] ﬂ[OlO] ﬂ[oou ﬂ[llO]
(GPa) (GPa) (GPa) (GPa) (TPa)™ (TPa)™ (TPa)" (TPa)’

82.41 8241 9557 12435 5.16 5.16 4.74 5.16

Along the different crystallographic directions, the following results about the
directional Young’s modulus and linear compressibility of the a-ZnP; crystal may be

inferred from our investigation:

E1001 = Ejotoy < Ejooyy < Epag 5 @=b<c (5.26)

Booy = Brooy = Biuaoy> Bpooy » @=b<c (5.27)

These substantial differences themselves indicate the existence of considerable
elastic anisotropy in the a-ZnP, crystal. Minimum and maximum values of linear
compressibility (Bmin and fmax), Poisson’s ratio (vimin and vmax), shear modulus (Gmin
and Gmax) and Young’s modulus (Emin and Emax) Of a-ZnP; crystal are shown in
Table 5.12. These elastic quantities are calculated by means of the ELATE program
[181, 182] using computed values of the a-ZnP, crystal.
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Table 5.12: Minimum and maximum values of linear compressibility g [in (TPa)™],

Poisson’s ratio v (unitless), shear modulus G (in GPa) and Young’s modulus E (in
GPa) of a-ZnP;

SCheme Gmin Gmax Emin Emax ﬂmin ﬂmax V min Vmax
PBEsol 31.13 66.64 84.90 133.35 4.14 455 0.0006 0.396
PBE 30.78 62.04 82.41 12435 4.74 516 0.0022 0.361

PWGGA 3113 62.65 83.28 12552 4.71 512 0.0017 0.360
LDA PZ 3290 7160 90.18 143.22 381 4.11 0.0002  0.407
LDAVWN 3299 71.79 9042 14358 3.80 4.10 0.0001 0.407
B3LYP 3400 6285 88.85 126.92 494 532 0.0096 0.319
B3PW 3343 6509 8898 13156 446 4.87 0.0107 0.349
PBEO 33.26 65.71 89.06 133.04 426 4.71 0.0123 0.360
HSEOQ6 32.85 64.99 88.03 13163 431 476 0.0127 0.361

Polar graphs (2D and 3D views) for the directional-dependent various elastic
quantities of a-ZnP, at zero pressure under the PBE scheme are plotted in Fig. 5.10 to
Fig. 5.17.
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Figure 5.10: Polar graphs™ (2D view) for the directional-dependent Young’s
modulus E (in GPa) of a-ZnP,, at zero pressure under the PBE scheme.
*Using the ELATE program [181, 182].
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Young’s Modulus

< o

Figure 5.11: Polar graph®” (3D view) for the directional-dependent Young’s modulus
E (in GPa) of a-ZnP; at zero pressure under the PBE scheme.
*Using the ELATE program [181, 182].

It is evident from Fig. 5.10 that the xy-plane has greater anisotropy than the
yz-plane for Young’s modulus E. In the yz-plane, it is observed that E increases from
82.41 GPato about 103.4 GPa (the maximum value in the yz-plane) as the angle (with
the [010] direction) varies from 0° to about 53.9°, and then E decreases from about
103.4 GPa to 95.57 GPa as the angle increases from about 53.9° to 90°. The
approximate maximum value of 103.4 GPa of Young’s modulus is again found at an
angle of about 126.1° in the yz-plane. In the xy-plane, an increase of the angle (with
the [100] direction) from 0° to 45° results in a continuous increase in the value of
Young’s modulus E from 82.41 GPa to 124.35 GPa (Emax in Table 5.12). Also, as the
angle (with the [100] direction) varies from 45° to 90°, E decreases continuously from
124.35 GPa to 82.41 GPa (Emin in Table 5.12). In the xy-plane, the maxima of E again
occur at an angle of 135° (with the [100] direction). For the yz- and xy- planes, the
maximum percentage change in the value of Young’s modulus E with respect to their
minimum values (in the corresponding planes) is about 25.5% and 50.9%,

respectively.
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Figure 5.12: Polar graphs® (2D view) for the directional-dependent linear

compressibility # [in (TPa)™] of a-ZnP, at zero pressure under the PBE scheme.

"Using the ELATE program [181, 182].
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Linear Compressibility

Figure 5.13: Polar graph®™ (3D view) for the directional-dependent linear
compressibility # [in (TPa)™] of a-ZnP, at zero pressure under the PBE scheme.

XUsing the ELATE program [181, 182].

For linear compressibility B, no variation of g with angle is observed in the
xy-plane, as apparent from Fig. 5.12. In the xz-plane, as the angle (with the [100]
direction) changes from 0° to 90°, linear compressibility decreases continuously from
5.16 (TPa) ™ to 4.74 (TPa)™. Thus, in the case of linear compressibility, the xz-plane
has anisotropy. For the xz-plane, the maximum percentage change in the value of
linear compressibility with respect to its minimum value is about 8.9%. Moreover, it
can be said that overall, more anisotropy is observed for Young’s modulus in
comparison to linear compressibility for a-ZnP,.

Directional-dependent Poisson’s ratio and shear modulus of a-ZnP, at zero pressure in
polar form are shown from Fig. 5.14 to Fig. 5.17. These polar graphs are plotted
under the PBE scheme as per the convention used for the ELATE program [181, 182].
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Figure 5.14: Polar graphs® (2D view) for the directional-dependent shear modulus G
(in GPa) of a-ZnP,, at zero pressure under the PBE scheme.
%YUsing the ELATE program [181, 182].
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Figure 5.15: Polar graph®® (3D view) for the directional-dependent shear modulus G
(in GPa) of a-ZnP; at zero pressure under the PBE scheme.
>2Using the ELATE program [181, 182].

As per the convention used in the ELATE program for the plots, the value of the
directional shear modulus G does not vary with angular variation in the xy-plane. In
the case of the yz-plane, shear modulus G varies from 44.92 GPa to 62.04 GPa (Gmax
in Table 5.12). For the yz-plane, the maximum percentage change in the value of
shear modulus G relative to its minimum value is 38.1%. For the physical quantities
Young’s modulus E and linear compressibility £, this study reveals that the xy-plane
has a higher level of anisotropy for Young’s modulus.

From Table 5.13, it is evident that the percentage variations in linear
compressibility and Young’s modulus are about 10% and 50%, respectively. The
shear modulus G has around 100% variation relative to its minimum value. Here,
anisotropy parameter Ag has relatively higher values in comparison with the alpha
phase of CdP,. The variation in Poisson’s ratio is more significant in the alpha phase
of ZnP, than in the alpha phase of CdP..
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Figure 5.16: Polar graphs™ (2D view) for the directional-dependent Poisson’s ratio v
(unitless) of a-ZnP; at zero pressure under the PBE scheme.

%sing the ELATE program [181, 182].
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Poisson’s Ratio

Figure 5.17: Polar graph®® (3D view) for the directional-dependent Poisson’s ratio v
(unitless) of a-ZnP; at zero pressure under the PBE scheme.
Stbysing the ELATE program [181, 182].

Table 5.13: Elastic anisotropy parameters: ratio of maximum to minimum values of
Young’s modulus E, linear compressibility £, shear modulus G and Poisson’s ratio v

for 0-ZnP,. Elastic anisotropy parameters A and AV for o-ZnP,

Scheme Anisotropy

Emax  Bmox  Cmax Vi

E min B min Gin Y min Ao A”
PBEsol 1.57 1.10 2.14 706.14 0.032 0.333
PBE 1.51 1.09 2.02 162.80 0.027 0.279
PWGGA 1.51 1.09 2.01 213.01 0.027 0.278
LDAPZ 1.59 1.08 218  2379.97 0.034 0.353
LDAVWN 159 1.08 2.18  4168.02 0.034 0.352
B3LYP 1.43 1.08 1.85 33.07 0.017 0.157
B3PW 1.48 1.09 1.95 32.71 0.024 0.249
PBEO 1.49 1.11 1.98 29.33 0.025 0.261
HSE06 1.50 1.10 1.98 28.54 0.026 0.262
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5.3.3 Elastic Properties of ZnAs;

5.3.3.1 Elastic Constants

The monoclinic crystal has 13 independent elastic stiffness constants [16], namely

C11, Cyp, C13, Cis, Coo, C23, Cos, C33, Css, Caa, Cys, Css and Ces for standard orientation.

The elastic properties are studied for ZnAs,, which has a monoclinic unit cell. The

computations of elastic stiffness constants under various functional schemes are

shown in Table 5.14. It is quite apparent from Table 5.14 that the elastic stiffness

constants Cy;, Cy2 and Cssz are significantly greater than the other elastic stiffness

constants, such as Cy2, Cj3, Cis, Cyg, Cos, Css, Cas, Cag, Cssand Ces.

Table 5.14: Elastic constants Cj; (in GPa) of ZnAs; at zero pressure

Scheme Cn Cp Cis Css Cx Cxs Cx Cs Cxs Cu Cg Css Ces
PBEsol** 126.72 63.47 59.95 -4.41 136.81 38.35 6.07 14584 1.75 26.73 4.23 4458 44.18
PBE 11783 56.74 53.64 -4.90 126.51 3257 571 13643 1.71 2550 3.92 42,95 41.65
PWGGA 11787 56.70 53.71 -455 126.63 33.52 553 13511 1.64 2561 3.92 42.20 42.37
LDAPZ 136.26 70.03 66.34 -3.61 146.28 43.81 6.91 156.69 2.11 27.72 4.87 45,98 47.66
LDAVWN 13495 68.87 6520 -3.63 146.97 42.65 6.94 15659 230 27.89 4.65 46.66 46.87
B3LYP 119.12 53.06 50.94 -522 126.78 29.48 5.48 138.05 1.51 27.30 3.92 4491 43.75
B3PW 12383 56.94 53.76 -5.06 131.85 32.60 5.62 14225 1.73 28.15 4.04 4577 45.29
PBEO 12756 59.81 56.46 —-4.98 13593 34.90 5.88 146.12 1.82 28.33 4.13 46.55 45.95
Other 95.63 31.47 102.5 112.7 20.76 40.45
Work>®

“Ref, [237].
SddRef. [67, 238].
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Table 5.15: Elastic compliance constants Sj; [in (TPa)™] of ZnAs; at zero pressure

Scheme Si S1 Si3 Si5 S» Sx3 S5 Sa Sz Su Sis Sss Ses

PBEsol™* 12.06 -4.63 -3.76 1.97 9.71 -0.63 -1.75 858 -0.62 37.98 -3.64 22.89 22.98
PBE 12.63 478 -3.86 223 1027 -055 -1.89 8.99 -0.73 3980 -3.74 23.82 24.36
PWGGA 1259 471 -386 213 1026 -0.65 -1.83 9.11 -0.68 39.60 -3.66 24.19 23.94
LDAPZ 1145 448 -3.62 174 9.26 -0.67 -1.71 811 -056 36.73 -3.75 22.17 21.36
LDAVWN 1144 -440 -359 1.72 9.13 -0.63 -1.67 8.06 -0.58 36.45 -3.61 21.84 21.69
B3LYP 11.87 424 -3.50 2.02 9.86 -0.52 -1.68 8.65 -0.63 37.11 -3.32 22.73 23.15
B3PW 1159 424 -343 193 9.63 -0.59 -1.63 847 -0.63 3599 -3.21 2229 22.37

PBEO 1141 422 -3.42 1.89 9.44 -0.60 -1.62 832 -0.62 3576 -3.21 21.91 22.05

>*Using Ref. [237].

Table 5.15 illustrates the elastic compliance constants under various functional
schemes. It is evident that values of Si2, Si3, S23, S2s, S3sand Sae are negative.

B (GPa)

1 2 3 4 5 538
P (GPa)

Figure 5.18: Computed bulk modulus B of ZnAs; as a function of applied pressure P
under the PBE functional.

The computed bulk modulus B of monoclinic ZnAs, increases with applied
pressure P. To our best knowledge, there is no other experimentally or theoretically
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reported data on elastic stiffness constants for monoclinic ZnAs; at higher pressures
for comparison with our work. It is obvious from Fig. 5.18 that bulk modulus shows a

significant variation with pressure.

Table 5.16: Computed values of Young’s modulus E (in GPa), bulk modulus B (in
GPa) and shear modulus G (in GPa) of ZnAs; at zero pressure

Scheme Bv Br Bx Gv Gr GH Ev Er En

PBEsol*" 81.44 81.28 81.36 39.60 36.67 38.14 10224 95.63 98.95
PBE 7408 7391 7399 3787 3503 3645 97.08 90.75 93.93
PWGGA 7416 7401 7409 3775 3506 3640 96.82 90.83 93.84
LDA PZ 88.84 88.62 88.73 4154 3835 39.95 107.82 100.54 104.20
LDAVWN 87.99 87.81 87.90 41.74 38,57 40.15 108.12 100.93 104.54
B3LYP 72.32 72.15 7224 39.89 37.17 3853 101.08 95.17 98.14
B3PW 76.06 75.89 7597 40.82 38.10 39.46 103.87 97.91 100.91
PBEO 79.11 78.93 79.02 4140 3858 39.99 105.74 99.518 102.64

STRef. [237].

The computed elastic moduli of monoclinic ZnAs; under various functional schemes
are reported in Table 5.16. Young’s modulus (Ev, Er and Ey), bulk modulus (By, Br
and By), and shear modulus (Gv, Ggr and Gy) of ZnAs; are reported in Table 5.16.
Using the obtained elastic constants, these elastic quantities are calculated by means
of the ELATE program [181, 182].

Poisson’s ratio v (unitless) of monoclinic ZnAs; at zero pressure is reported in
Table 5.17. These values of Poisson’s ratio (vv, vg and vy) of ZnAs, at zero pressure
are computed by means of the ELATE program [181, 182] using the obtained elastic
constants. It is noteworthy to examine the ratio B/G for ZnAs,. The ratio B/G for the
ZnAs, crystals has a value of about 2. It indicates the malleable nature of
polycrystalline ZnAs,. From Table 5.17, it is also obvious that the computed values
of Poisson’s ratio lie in the theoretically predicted range [137] for materials.
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Table 5.17: Computed values of Poisson’s ratio v (unitless) of ZnAs, at zero

pressure
Scheme Vv VR VH
PBEsol%  0.291 0.304 0.297
PBE 0.282 0.295 0.288

PWGGA 0.282 0.295 0.289
LDA PZ 0.298 0.311 0.304
LDAVWN 0.295 0.308 0.302

B3LYP 0.267 0.280 0.274
B3PW 0.272 0.285 0.279
PBEO 0.277 0.290 0.284

S9Ref. [237].
5.3.3.2 Elastic Anisotropy

To study the anisotropy of monoclinic ZnAs;, at zero pressure, directional Young’s
modulus, shear modulus and linear compressibility have been investigated and their
polar graphs have been plotted in different crystallographic planes.

The minimum and maximum values of the linear compressibility (Smin and Smax),
Poisson’s ratio (vmin and vmax), shear modulus (Guin and Gmax) and Young’s modulus
(Emin and Emax) of monoclinic ZnAs; are shown in Table 5.18. These elastic quantities
are calculated by means of the ELATE program [181, 182] using the computed values
for the ZnAs; crystal.

Table 5.19 illustrates that the percentage variations in the linear compressibility
and Young’s modulus are about 25% and 70%, respectively. The shear modulus G
has around 100% variation relative to its minimum value. It is obvious from
Table 5.19 that the anisotropy parameter A” of monoclinic ZnAs, have relatively
higher values in comparison with alpha phase CdP,. Table 5.19 shows that the
variation in Poisson’s ratio is more significant in the monoclinic ZnAs; crystal than in
the alpha phase of CdP..
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Table 5.18: Minimum and maximum values of linear compressibility g [in (TPa)™],

Poisson’s ratio v (unitless), shear modulus G (in GPa) and Young’s modulus E (in
GPa) of ZnAs;

Scheme G

<

min max min max ﬂmin ﬂmax min max

PBEsol™ 25.76 51.76 70.92 121.47 3.60 4.45 0.051 0.491

PBE 24.60  49.67 67.29 116.32 3.95 4.95 0.038 0.481
PWGGA 24.74  48.93 67.70 11439 3.96 4.90 0.049 0.479
LDA PZ 26.60 54.13 73.82 127.71 3.23 411 0.059 0.510
LDA VWN 26.82 54.84 7441 129.00 3.31 4.10 0.055 0.504
B3LYP 26.41 51.70 7156  120.17 4.09 5.09 0.039 0.454
B3PW 27.25 52.43 73.82 122.84 3.88 4.80 0.048 0.458
PBEO 2742 53.29 74.66 125.17 3.71 4.61 0.051 0.468

"Ref. [237].

Table 5.19: Elastic anisotropy parameters: ratio of maximum to minimum values of
Young’s modulus E, linear compressibility , shear modulus G and Poisson’s ratio v
for ZnAs,. Elastic anisotropy parameters A and A" for ZnAs;

Scheme Anisotropy
nex Bmax Omax  Vinax
E min Brin G min Vmin Ao A"

PBEsol™" 1.71  1.24 2.01 9.59 0.019  0.402
PBE 1.73  1.25 2.02 12.59 0.020  0.408
PWGGA 1.69 1.24 1.98 9.77 0.037  0.386
LDA PZ 1.73 127 2.04 8.65 0.040  0.419
LDA VWN 1.73 124 2.05 9.12 0.040  0.413
B3LYP 1.68 125 1.96 11.72 0.035  0.368
B3PW 1.66  1.24 1.92 9.60 0.034  0.359
PBEO 1.68  1.24 1.94 9.20 0.035  0.368

Siysing Ref. [237].

The obtained value of the elastic anisotropy index A" is nearly 0.41 at zero
pressure under the PBE method. The theoretically predicted maximum and minimum
values of directional elastic quantities have a correlation with elastic anisotropy.

Table 5.18 illustrates that G, E and g have significant differences between their
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respective maximum and minimum values. Hence, it is inferred that bulk anisotropy,
as well as shear anisotropy, are exhibited by monoclinic ZnAs,. Ranganathan’s
universal elastic anisotropy index A" has a higher value for monoclinic ZnAs; in

comparison with a-CdP, and a-ZnP,.
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_0+‘_;?_"

Young's modulus in (yz) plane

Figure 5.19: Polar graphs® (2D view) for the directional-dependent Young’s
modulus E (in GPa) of ZnAs; at zero pressure under the PBE scheme.
SiUsing the ELATE program [181, 182].
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Young’s Modulus

Figure 5.20: Polar graph®* (3D view) for the directional-dependent Young’s
modulus E (in GPa) of ZnAs; at zero pressure under the PBE scheme.
SkUsing the ELATE program [181, 182].

The plots of the directional Young’s modulus, shear modulus and linear
compressibility could provide valuable insights about the elastic anisotropy of the
crystals. It is apparent from Fig. 5.19 to Fig. 5.22 that the polar plots of the directional
Young’s modulus and linear compressibility are not in a circular shape. Therefore, the
presence of finite elastic anisotropy is inferred for monoclinic ZnAs,. In the xy-plane,
Young’s modulus E first increases and then decreases continuously as the angle (with

the x-direction) increases from 0°to 90°.
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Figure 5.21: Polar graphs™

(2D view) for the directional-dependent linear
compressibility g [in (TPa)™] of ZnAs; at zero pressure under the PBE scheme.

Slusing the ELATE program [181, 182].
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Linear Compressibility

Figure 5.22: Polar graph®™ (3D view) for the directional-dependent linear
compressibility g [in (TPa)™] of ZnAs; at zero pressure under the PBE scheme.

™MUsing the ELATE program [181, 182].

The polar graphs of Young’s modulus and linear compressibility for ZnAs, were
plotted with the PBEsol scheme in other work [237]. The directional-dependent
Poisson’s ratio and shear modulus of monoclinic ZnAs; at zero pressure under the
PBE scheme in polar form are depicted in Fig. 5.23 to Fig. 5.26. These polar graphs
have been plotted as per the convention used for the ELATE program [181, 182].
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Figure 5.23: Polar graphs®™ (2D view) for the directional-dependent shear modulus
G (in GPa) of ZnAs; at zero pressure under the PBE scheme.

*™Mysing the ELATE program [181, 182].
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Shear Modulus

Figure 5.24: Polar graph®® (3D view) for the directional-dependent shear modulus G
(in GPa) of ZnAs; at zero pressure under the PBE scheme.
%°sing the ELATE program [181, 182].
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Figure 5.25: Polar graphs® (2D view) for the directional-dependent Poisson’s ratio v
(unitless) of ZnAs; at zero pressure under the PBE scheme.
*PUsing the ELATE program [181, 182].
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Poisson’s Ratio
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Figure 5.26: Polar graph®® (3D view) for the directional-dependent Poisson’s ratio v
(unitless) of ZnAs; at zero pressure under the PBE scheme.
>¥Ysing the ELATE program [181, 182].

5.4 Conclusions

The projections (polar graphs) of Young’s modulus on the different xy-, xz- and yz-
planes provide insight into the variation in Young’s modulus. Our study reveals the
malleable nature of a-CdP, at zero pressure. The directional Young’s modulus of
a-CdP; varies from 48.89 GPa to 71.53 GPa under the PBE method. The directional
shear modulus of a-CdP; varies from 19.26 GPa to 32.74 GPa under the PBE method.
For a-ZnP,, the values of the elastic constants C;; and Css are substantially greater in
comparison to the other elastic stiffness constants, such as Ciz, Ci3, C44 and Cge. The
calculated values of the Young’s modulus and bulk modulus for polycrystalline
a-ZnP; are 105.70 GPa and 66.43 GPa, respectively, under the PBE method. The
value of Young’s modulus is indicative of the stiffness of the substance. Therefore, it
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may be concluded that the a-ZnP, crystal has enough stiffness. Our present findings
show that a-CdP,, a-ZnP, and monoclinic ZnAs; crystal systems have definite elastic
anisotropies. The calculated value of the elastic anisotropy index A" is 0.279 at zero
pressure in the case of a-ZnP, under the PBE scheme. For a-ZnP,, the angular
variation of Young’s modulus E is similar in the xz-plane and in the yz-plane. For
a-ZnP,, the yz-plane has higher elastic anisotropy in comparison with the xy-plane for
linear compressibility. In the case of Young’s modulus of a-ZnP,, the xy-plane has
greater anisotropy than the yz-plane. Substantial differences are present among the

calculated values of the directional Young’s moduli Ejoy, Ejgeyy @and Eyyygp for a-ZnPo.

In general, our calculated elastic moduli of a-ZnP, are in reasonably fair agreement
with the existing available experimental data. Our investigation also shows that the
yz-plane has remarkable anisotropy for the shear modulus of o-ZnP,.
This comprehensive computational study of the anisotropic properties of the alpha
phase of ZnP, may bestow a prophecy about the favored orientation of the a-ZnP;
crystal for devising optoelectronic instruments. Our computational outcome on the
elastic properties of a-ZnP, might provide a guiding point for experimentalists.

The elastic anisotropy index AY has a higher value for monoclinic ZnAs; in
comparison with a-CdP, and a-ZnP,. Our investigation illustrates that the percentage
variation in Poisson’s ratio is higher in monoclinic ZnAs; than in a-CdP,. The
polycrystalline bulk modulus By has a higher value for monoclinic ZnAs; in
comparison with a-CdP, and a-ZnP,. The value of polycrystalline Young’s modulus
En is relatively high for a-ZnP, in comparison with a-CdP, and monoclinic ZnAs;.
The polycrystalline shear modulus Gy has a higher value for a-ZnP, in comparison
with a-CdP, and monoclinic ZnAs,. The polar graphs in the xz-plane for the
directional-dependent linear compressibility £ show that a-CdP, has more anisotropy
than a-ZnP;.
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6.1 Conclusions

The present investigation illustrates the structures of the orthorhombic CdP,,
tetragonal ZnP; and monoclinic ZnAs; crystals. Our work shows that the atomic pair
P-P has the nearest distance of about 2.19 A and the atomic pair Cd-P has the nearest
distance of about 2.61 A in the alpha phase of CdP, under PBE scheme. The values of

the isothermal bulk modulus B, of o-CdP, are calculated with EOS (Birch-

Murnaghan, Vinet and Poirier-Tarantola) and these values lie in the range 51.94-
64.57 GPa. At zero pressure, the first pressure derivative of bulk modulus of the
orthorhombic a-CdP; crystal is in the range 3.93-4.17. The computed first pressure

derivative B of a-ZnP; is about 4.5. The bulk modulus B, for the alpha phase of

ZnP, is about 64-83 GPa. In the alpha phase of ZnP,, the nearest P-P atomic pair
distance is about 2.17 A and the nearest Zn-P atomic pair distance is about 2.3 A
under LDA scheme. The computed nearest neighbor distance between the P-P atomic
pair in the alpha phase of CdP; is not much different from the nearest neighbor
distance between the P-P atomic pair in the alpha phase of ZnP,. At zero pressure, the

obtained value of the calculated angle g for ZnAs; is around 102.46.° The nearest

atomic pair Zn-As distance is around 2.41 A and the nearest atomic pair As-As
distance is around 2.46 A in the ZnAs;, crystal under PBE scheme. The estimated
value of the first pressure derivative of the monoclinic ZnAs; crystal lies in the
approximate range of 2.61to 4.20. The computed value of bulk modulus for the
ZnAs; crystal is in the range 72.31-86.13 GPa. In the ZnAs; crystal, the nearest

atomic pair As-As distance is larger than the nearest atomic pair Zn-As distance. The

estimated first pressure derivatives B, of a-CdP,, a-ZnP, and ZnAs; lie in the general

range of By from 2 to 6 for solids. Among a-CdP,, 0a-ZnP, and ZnAs,, bulk modulus

is found to have a low value for a-CdP,. The first pressure derivative is the highest for
a-ZnP; among a-CdP2, a-ZnP, and ZnAss;.

The present work explores the electronic properties of a-CdP,, a-ZnP, and ZnAss.
In the vicinity of Fermi energy, the contribution to the density of states of each Cd
atom is less in comparison to that of each nonequivalent phosphorus atom [P(I) and
P(11)] in a-CdP,. The estimated approximate charge transfer values for Cd, P(I) and
P(I1) are 1.06e, 0.54e and 0.52e, respectively, for a-CdP,. The value of the maximum
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overlap population for pair Cd-P is nearly 0.148 and for pair P-P, it is 0.076 in a-CdP;
under PBE scheme. The value of the energy band gap of the alpha phase of CdP; is
almost 1.78 eV under the GGA functionals (PBE, PBEsol and PWGGA).

For a-ZnP,, near the Fermi energy level, the contribution of each Zn atom is lower in
comparison with each P atom. In the vicinity of the Fermi level, for the P atom of the
alpha phase of ZnP,, the contribution of s and d orbitals is much lower than that of
p orbitals to the density of states. It can be said that the contribution of s and d orbitals
of P atom is negligible near Fermi energy. In a similar way, the contribution of the
f orbitals of Zn atom of a-ZnP, to DOS is insignificant. The p and d orbitals of Zn
atom contributes to the density of states more than that of s orbitals of Zn atom in
a-ZnP; in the vicinity of Fermi energy. Near the bottom of the conduction band region
and the top of the valence band, p orbitals of P atoms mainly contribute to the density
of states for a-ZnP,, i.e., specified band regions have mostly P-p characters. The
energy band gap of a-ZnP, is about 1.5 eV under the GGA functional. Charge
transfers take place about 1.07e, 0.52e and 0.54e for Zn atom, P(I) atom and P(II)
atom, respectively, in the alpha phase of ZnP,. For a-ZnP,, the value of the maximum
overlap population between pairs Zn-P is nearly 0.17 under PBE functional. The value
of the maximum overlap population between pairs P-P is of the order of 0.04 for
a-ZnP;.

In the vicinity of the Fermi energy level, the contributions of each nonequivalent
arsenic atom to the density of states are more significant than those of each
nonequivalent zinc atom in the ZnAs; crystal. Near the Fermi energy, for DOS, the
contribution of p orbitals is greater than that of s and d orbitals of the nonequivalent
As(l) atoms in monoclinic ZnAs;. In the vicinity of the Fermi energy level, all the
arsenic atoms follow nearly the same pattern for the density of states in ZnAs,. The
contributions of s and f orbitals of the nonequivalent Zn(l) atom to DOS are less than
that of p and d orbitals of the nonequivalent Zn(l) atom in ZnAs,. The computed
charge transfer values for the nonequivalent atoms Zn(l) and Zn(l1) are nearly 0.96e
and 0.94e, respectively, for ZnAs,. The estimated values of charge transfer for the
nonequivalent atoms As(l), As(Il), As(l11) and As(IV) are nearly 0.46e, 0.46e, 0.46e
and 0.51e, respectively, for the monoclinic ZnAs; crystal. The value of energy band

gap under the GGA functionals is about 0.81 eV for ZnAs,. The value of the
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maximum overlap population for pair As-As is about 0.27 and for pair Zn-As, it is
about 0.20 in ZnAs;.

Our study provides insight into the elastic properties of the semiconductor
compounds a-CdP,, a-ZnP, and ZnAs;. The present work reveals the malleable nature
of the alpha phase of CdP,. The value of the elastic constant C;; is the maximum
among the other elastic constants of a-CdP,. The elastic constants Cy, and Cs; are

substantially greater than other elastic stiffness constants, such as Ciz, Ci3, C,, Caa,
Css and Ceg in the alpha phase of CdP,. Our results show that C, >C,, >C,;>C,,and

C, >Cy >C; for a-CdP,. It is observed that elastic moduli E, > B, >G,, for a-CdP;.

The estimated Poisson’s ratio v,, for o-CdP; is about 0.28-0.32. The elastic

anisotropy parameters ratio of the maximum to minimum values of Young’s modulus,
linear compressibility, shear modulus and Poisson’s ratio for a-CdP; are nearly 1.46,
2.08, 1.70 and 4.44, respectively, under PBE scheme. In the case of Young’s modulus
of a-CdP,, the yz-plane has greater anisotropy than the xy-plane.

Our study illustrates C,, >C,, >C,, >C,, for the alpha phase of ZnP,. For a-ZnP,,
the values of the elastic constants Cy; and Cs3 are sufficiently greater than the other
elastic stiffness constants, such as Ci,, Ci3, Cas and Ceg. It is also observed that elastic

moduli E,>B,>G,, for a-ZnP,. The computed value of Poisson’s ratio v, for

a-ZnP5 is in the range 0.21-0.26. This work indicates the brittle nature of the alpha
phase of ZnP,.
Along different crystallographic directions, the directional Young’s modulus of the

0-ZnP, crystal follows the relation E g, = Ejy < Ejey < Epgy » @=b<c, whereas
linear compressibility follows the relation f;4,, = By = B> Brooy- 1HE  €lastic

anisotropy parameters ratios of the maximum to minimum values of Young’s
modulus, linear compressibility and shear modulus for a-ZnP; are nearly 1.51, 1.09
and 2.02, respectively. The ratio of the maximum to minimum value of Poisson’s ratio
for a-ZnP, is much greater than that of a-CdP,. For the Young’s modulus of a-ZnP5,
the yz-plane has a smaller anisotropy than the xy-plane. The yz-plane has substantial
anisotropy for shear modulus for the alpha phase of ZnP..
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Our present work illustrates C,,, C,, and C,, are much greater than other elastic
constants, such as Caqs, C., Ces, C,, Ci13, C;5, C,, C,c and C,, for ZnAs, crystals.

For ZnAsy, it is observed that elastic moduli E, > B, >G,,. The computed value of

Poisson’s ratio v,, for ZnAs; is in the range of 0.27-0.31. The elastic anisotropy

parameters ratios of maximum to minimum values of Young’s modulus, linear
compressibility, shear modulus and Poisson’s ratio for ZnAs; are 1.73, 1.25, 2.02 and

12.59, respectively, under PBE scheme.

The bulk modulus By of ZnAs; has a higher value than that of a-CdP, and a-ZnP-.
Polycrystalline shear modulus Gy has a higher value for a-ZnP, in comparison with

a-CdP; and ZnAs,. The obtained values of Poisson’s ratios v,, for a-CdP,, a-ZnP,and

ZnAs; lie in the theoretically predicted range. This investigation shows that a-CdP,,
a-ZnP; and ZnAs; crystal systems have definite elastic anisotropy. This investigation
on the anisotropic properties of the semiconductor compounds ZnAs;, a-CdP, and
a-ZnP, might give a guiding point for the favoured orientations of these crystals for
devising optoelectronic instruments. In the case of the requirement of malleable
nature of the materials for device fabrication, a-CdP, and ZnAs;, have advantages over
a-ZnP,. If a device requires more stiffness for linear compression (i.e., large value of
Young’s modulus), then a-ZnP; has advantages over a-CdP; and ZnAs,. In the case of
the requirement of a low value of transverse strain (for a given longitudinal strain) for
the polycrystalline materials, then a-ZnP; should be preferred over a-CdP, and ZnAs,,
as a-ZnP, has a relatively low value of Poisson’s ratio. Our comprehensive
computational results about the elastic properties of a-CdP,, a-ZnP, and ZnAs;
crystals might be useful for experimentalists. The DFT method in computational
materials science played an important role in calculating the elastic anisotropy of
these compounds. The present study of these semiconducting compounds is likely to
be beneficial for further research in optoelectronic device applications.

6.2 Future Scope

Concerning future scope, our findings would be useful to explore the properties of
11-V; semiconductors through further experiments. Semiconducting compounds CdPy,
ZnP; and ZnAs, may be studied with the doping of suitable elements. Investigations
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may be carried out with different amounts of doping. The properties of CdP,, ZnP;
and ZnAs, with doping may also be investigated with temperature variations. Further
research might reveal the properties of these compounds for doping. More DFT work
is needed to explore the temperature-dependent structural, electronic and elastic
properties of these compounds. Pressure-dependent structural, electronic and elastic
properties of these compounds may also be explored.

The photoelastic properties of these compounds have yet to be investigated by
researchers. Investigation of the piezoelectric tensor of the semiconducting
compounds CdP;, ZnP; and ZnAs; is to be explored. A thorough investigation of
dielectric properties, such as reflection coefficient, absorptivity, etc., should be carried
out. The thermoelectric properties of these semiconducting compounds have yet to be
thoroughly investigated. Electron thermal conductivity, Seebeck coefficient and
power factor have not yet been studied thoroughly for these compounds. Furthermore,
the calculation of effective mass should be explored in future research. The properties
of the nano phase of these compounds may be studied to expand different
perspectives on technological applications. There are some other [I-V;
semiconducting compounds, such as ZnSbh,, CdSb,;, CdAs,;, ZnN, and CdN,.
Investigators gave scant attention to the compounds ZnSh,, CdSh,, CdAs;, ZnN, and
CdNy. There is a lot of scope for investigating the unexplored properties of these
compounds in future research. Our investigation might stimulate further experimental

research on these compounds.
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SUMMARY

This thesis deals with an Ab-Initio investigation of some I1-V, semiconducting
compounds. A DFT study of mainly a-CdP,, a-ZnP; and ZnAs;, has been carried out
in the present investigation. The usefulness of semiconductors in devices has
encouraged accelerated research endeavors to characterize their properties better [2].
A quantum mechanical Ab-Initio computer program provides the computation scheme
to investigate many properties of crystalline systems [3]. Semiconductors have many
technological utilizations, such as transistors, photoconductors, solar cells, strain
gauges, charge-coupled devices, light-emitting diodes (LEDs), etc. [8]. Generally,
semiconductor devices have reliability and these devices are also relatively
economical [8]. Applications of the optical properties of solids are commercially
valuable [9]. For optical integrated circuits, photonics has become an important area
of research nowadays [9]. The level of Fermi energy in the DOS (density of states)
versus the energy plot plays an important role to determine the electronic transport
properties of solids [13]. For the deformation of matter, the theory of elasticity forms
a mathematical model [18]. In general, crystals are said to be anisotropic because of
their direction-dependent properties. 11-V, semiconducting compounds are made from
the 12" and 15" column elements of the periodic table. These compounds are useful
in the fabrication of optoelectronic devices [25, 26, 27].

The thesis consists mainly of six chapters. In Chapter 1, Group Il and Group V
elements for 11-V, semiconducting compounds have been discussed. A brief overview
of some 1I-V; semiconducting compounds, such as 11-V, phosphides and 11-V;
arsenides, is provided in Chapter 1. A special attention has been given to the review
of the literature on CdP,, ZnAs, and ZnP,. Motivation for research work and an
outline of the thesis are also provided in the first chapter.

In Chapter 2, the basic theoretical framework and computational software/ tools
are illustrated. Chapter 2 describes DFT (Density Functional Theory), LCAO (Linear
Combination of Atomic Orbitals), Basis Sets, Mulliken population, equation of state
(EOS), computation cost, elastic stiffness and compliance constants. Useful
software/tools CRYSTAL Program, DL Visualize (DLV), CRYSPLOT and ELATE
are introduced in Chapter 2.
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The structural, electronic and elastic properties of a-CdP,, a-ZnP, and ZnAs; are
studied with the CRYSTAL code (periodic ab-initio HF and DFT code) [124, 140]. In
this study, computations are carried out with the GGA functionals (PBE [187, 188],
PBEsol [189, 190] and PWGGA [191, 192, 193, 194, 195, 196]), LDA functionals
(LDA PZ [197, 198] and LDA VWN [197, 199]), global hybrid functionals (B3PW
[191, 192, 193, 200, 201], B3LYP [199, 200, 202, 203] and PBEO [204, 205, 206,
207]) and range-separated hybrid functional (HSEO06 [187, 188, 208, 209, 210, 211,
212, 213, 214, 215]). In the present investigation, the basis sets for cadmium, zinc,
phosphorus and arsenic atoms are used from the CRYSTAL-Basis Set Library of the
Torino group [124, 140]. An 8x8x8 Monkhorst-Pack k-point mesh [139] is
implemented for computation. The Fock/Kohn-Sham matrix mixing factor is utilized
as a convergence tool for computations. Electronic properties, such as the density of
states and band structures, Mulliken population, etc., are investigated by means of the
CRYSTAL Code [124, 140]. Unit cell parameters and atom coordinates can be
optimized under the full geometry optimization process [124] by means of the
CRYSTAL program. The CRYSTAL program can also explore the dielectric [168,
169, 170], elastic [171, 172, 173, 174], and piezoelastic [174, 177, 178] properties of
the substances.

DL Visualize (DLV) is a graphical user interface (GUI) that provides the facility
of displaying and editing the structures of molecules, periodic structures of surfaces
and crystals [179]. DLV facilitates the GUI to CRYSTAL Code [124, 140, 179].

CRYSPLOT [180] is an online tool to plot different specified features of
crystals computed with the CRYSTAL Program [124, 140]. It provides a plotting
option for the total and projected density of states for atoms [180]. The CRYSPLOT
also allows plotting the density of states and band structure in a single combined plot
[180]. The Fermi energy line in the band structure can be displayed through the
CRYSPLOT [180].

ELATE [181, 182] is an online tool that is used for the exploration of elastic
tensors. The maximum and minimum values of elastic moduli may be obtained using
the ELATE software [181]. The EALTE software also gives the values of the
anisotropy parameters. Directional variations of shear modulus, Young’s modulus,
linear compressibility and Poisson’s ratio are analyzed and visualized by means of the
ELATE software [181]. Visualizations of 2D and 3D plots may be obtained using
the ELATE program [181].

128



Summary

In Chapter 3, the optimized lattice parameters of conventional cells have been
investigated using initial geometry data of 11-V; semiconducting compounds by means
of CRYSTAL Code [124, 140]. Atomic pair distances for the first 06 nearest atoms in
compounds are computed. Plots of relative energy per unit cell of the compound
versus its unit cell volume are illustrated in this work.

The computation of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124,
130, 131] and Poirier-Tarantola [124, 132, 136] equations of states [173] is carried
out. Two crystalline phases of cadmium diphosphide, namely, alpha and beta, are
reported [40, 41, 50]. The o-CdP, crystal has an orthorhombic crystal structure at
room temperature [41]. A tetragonal crystal structure is reported for the beta phase of
CdP, [35, 45]. The reported space group of a-CdP, is Pna2; [40, 41]. The lattice
parameters of a-CdP, are a = 9.90 A, b = 5.408 A and ¢ = 5.171 A, as stated by
Goodyear et al. [40]. The a-CdP, comprises three nonequivalent atoms, namely, Cd,
P(1) and P(ll) [40]. The atomic pair P-P has the nearest distance of nearly 2.19 A,
whereas atomic pair Cd-P has the nearest distance of about 2.61 A under PBE
scheme. The computed values of bulk modulus of a-CdP, are in the range 51.94-

64.57 GPa. The computed values of the first pressure derivative B; of o-CdP, are
around 4.05. Hence, this range for a-CdP; lies in the general typical range of B; from

2 to 6 for solids [220].

Two different crystalline phases of ZnP, are shown as a-ZnP; and B-ZnP; [28,
34]. The a-ZnP, and B-ZnP, crystals have tetragonal and monoclinic crystal
structures, respectively [28, 34]. a-ZnP, has lattice parameters a = 5.08 A and
¢ =18.59 A [36]. The conventional unit cell of the alpha phase of ZnP, has 08 formula
units [28, 36]. The estimated computed range of the first pressure derivative for
a-ZnP; is 4.34-4.58. The estimated range of bulk modulus for a-ZnP; is 63.9-
83.3 GPa.

The space group of monoclinic ZnAs; is P2i/c (C5,,) [46, 47]. The monoclinic
unit cell of ZnAs; has 08 formula units [46]. The conventional unit cell of ZnAs; has
six nonequivalent atoms [47, 50]. The computed angle # of monoclinic ZnAs; is

around 102.46.° The typical computed value of the first pressure derivative for ZnAs;

is 2.61-4.20. The estimated values of bulk modulus for ZnAs; are in the range of
72.31-86.13 GPa.
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Chapter 4 addresses the study of the electronic properties of a-CdP,, a-ZnP,
and ZnAs; The energy band gaps of these compounds have been computed under
various functional schemes. For a-CdP,, the highest point of the valence band is
found on the path I'-Z and the lowest point of the conduction band is found near the
X point. For a-CdP,, computations have been performed along high symmetry
directions for special points (namely X,Z,S,U,Y, R, T etc.) in the Brillouin zone [4].
So, it illustrates the indirect energy band gap for a-CdP,. The density of states of
nonequivalent atoms in the alpha phase of CdP; is studied. Each P(l) and P(Il) atom
contributes more in comparison to the contribution to the density of states (DOS) by
Cd atom. Under PBE scheme, the computed values of charge transfer for P(l), P(Il)
and Cd atoms are about 0.54e, 0.52e and 1.06e, respectively, in the alpha phase of
a-CdP,. The value of the maximum overlap population for the pair Cd-P is found to
be nearly 0.148 under PBE functional. The present study shows that the energy band
gap of o-CdP, is almost 1.78 eV under the GGA functionals (PBEsol, PBE and
PWGGA).

The energy band gap value for the alpha phase of ZnP, under the PBE functional
is 1.54 eV, which is an indirect energy band gap. For a-ZnP,, point M is the highest
point in the valence band. The contributions of s and d orbitals of P(I) atom of a-ZnP;
are minimal to the density of states near the Fermi level. Also, the contribution of p
orbitals of P(I) atom of a-ZnP, is much higher than that of s and d orbitals to DOS.
For a-ZnP,, the contribution of the f orbitals of Zn atom to DOS is negligible. In
a-ZnP, under PBE scheme, charge transfers take place about 1.07e, 0.52e and 0.54e
for Zn atom, P(I) atom and P(Il) atom, respectively. The maximum overlap
population between pairs Zn-P is about 0.17 in a-ZnP, under PBE scheme.

For the monoclinic ZnAs;, the energy band gap under the GGA functionals is
about 0.81 eV. The value of the maximum overlap population for pair Zn-As is about
0.20 and for pair As-As, it is about 0.27 in ZnAs,.

The contributions of each nonequivalent arsenic atom to the density of states near
Fermi energy are more significant than those of each nonequivalent zinc atom in
ZnAs,. In the vicinity of the Fermi energy, for DOS, the contribution of p orbitals of
nonequivalent As(l) atom is more significant than that of s and d orbitals of
nonequivalent As(l) atom in the ZnAs; crystal. Also, the contributions of s and f
orbitals of nonequivalent Zn(l) atom to DOS are less than those of p and d orbitals of

130



Summary

nonequivalent Zn(l) atom in monoclinic ZnAs,. The computed values of charge
transfer for nonequivalent atoms As(l), As(ll), As(I11) and As(IV) are nearly 0.46e,
0.46e, 0.46e and 0.51e, respectively, for ZnAs,. The calculated charge transfer values
for the nonequivalent atoms Zn(1) and Zn(l1) are about 0.96e and 0.94e, respectively,
for ZnAs,.

In Chapter 5, elastic constants Cjj and elastic compliance constants S are
computed for a-CdP,, a-ZnP; and ZnAs,. For these compounds, the investigation of
the directional dependence of linear compressibility, Poisson’s ratio, shear modulus
and Young’s modulus is carried out by plotting polar graphs. Minimum and
maximum values of linear compressibility g, Poisson’s ratio v, shear modulus G and
Young’s modulus E of these compounds are computed under various functionals.

The variation of the bulk modulus of the 11-V, compounds with pressure is studied
using the keyword EOS [173]. The elastic quantities Young’s modulus E, bulk
modulus B and shear modulus G are computed by utilizing the ELATE program [181,
182]. For these compounds, it is observed that E,>B,>G,. The brittleness and

malleability properties of the polycrystalline substances are correlated with the ratio
of bulk modulus B to shear modulus G [231]. The malleable nature of a
polycrystalline substance is likely to be predicted for a ratio B/G greater than nearly
1.75 [231]. Ranganathan’s term universal elastic anisotropy index A" [234] is
calculated for these compounds.

The orthorhombic CdP; crystal has nine independent elastic constants C;3, Ci,

Ci3 C2z, Ca3, Cy3, Cus, Css and Ces [16]. The necessary and sufficient elastic stability

conditions for the orthorhombic crystal, as stated by Mouhat et al. [230], are followed
by the alpha phase of CdP-.

The crystal of the tetragonal (1) class (4/mmm) has 06 independent elastic
stiffness constants Ci1, Ciz, Ci3, Cy5, Cas and Ces [16]. In view of the resisting
structural deformation, the bulk modulus of nearly 66 GPa of the alpha phase of ZnP;
shows its considerably ample mechanical strength. In the case of a-ZnP,, the xy-plane
has greater anisotropy than the yz-plane for Young’s modulus E. The maximum
percentage change in the value of linear compressibility of a-ZnP, with respect to its
minimum value is about 8.9% for the xz-plane.

The thirteen independent elastic stiffness constants, namely Ci1, Ci2, Cy3, Cis,

Ca2, C,3, Cos, Cg3, Css, Cas, Cus, Css and Cee are reported for standard orientation of
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monoclinic crystal [16]. In the present study, the calculated bulk modulus B of ZnAs;
increases with applied pressure (P from 0 to 6 GPa). The shear modulus G has around
100% variation relative to its minimum value for ZnAs,. The anisotropy index A" has
a higher value for ZnAs; in comparison with a-CdP, and a-ZnP.

In Chapter 6, conclusions and future scope are illustrated. The present
investigation on the anisotropic properties of the semiconducting compounds a-CdPy,
a-ZnP, and ZnAs; might provide a guiding point for the favored orientation of these
crystals for devising optoelectronic instruments. This study of these semiconducting
compounds is likely to be beneficial for further research in optoelectronic device

applications.
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Abstract

The energy bands, density of states, charge density, Mulliken population, equation of state and elastic
properties of a-CdP, have been studied. Exchange correlation functional PBEsol is utilized in this study.

The optimized equilibrium lattice parameters of the conventional cell have been obtained. The present
investigation indicates the existence of an indirect band gap of 1.76 eV in a-CdP; crystal. Elastic calculations
show the mechanical stability of the alpha phase of CdP, crystal. This work provides an analysis of
directional Young’s modulus and linear compressibility for a-CdP,. The study of the elastic anisotropy
parameters shows that the alpha phase has a definite elastic anisotropy. The calculated Debye temperature of
a-CdP,is288.1 K.

1. Introduction

Cadmium diphosphide (II-V, group semiconducting compound) is reported to be a good feasible material for device
application in the field of optoelectronics [1-3] and thermal sensors [4]. The optical properties of CdP, enable it to be
used in the fabrication of solar cells [5]. CdP, is also useful as a dopant compound for the fabrication of nGaAs/InP
PIN photodetector arrays by the metal-organic chemical vapor deposition technique [6]. CdP; exists in two different
crystalline phases, namely alpha and beta [7]. The alpha phase of CdP; is an orthorhombic structure at room
temperature [7]. The a-CdP; crystal structure has a space group Pna2, with four formula units in the conventional
unit cell [8]. A pronounced structural character in the alpha phase of CdP; is a helical OOI[P‘] -chain coordinated to
cadmium ions [7]. The peculiarity of the a-CdP, structure is chains of P atoms existing parallel to each other in the ¢
direction in the crystal [9]. DFT calculation showed the piezoelectricity in the alpha phase of CdP, [10-12]. This
piezoelectric characteristic opens the doors for the future possibility of using a-CdP, in designing piezoelectric
devices such as piezoelectric sensors, transducers, etc. The piezoelectric effect is closely related to basic mathematical
formulations based on elastic stiffness constants and dielectric susceptibility. Our elastic characterization and
interpretation may get considerable practical utility in the field of piezoelectric device technology for future research.
The experimental and theoretical investigations of tetragonal 3-CdP, have been carried out by several researchers
[13-16]. To the best of our knowledge, thorough experimental and theoretical investigations of the alpha phase of
CdP, have not yet been reported. The first principle method within density functional theory has been applied to
explore the structural properties, energy bands, density of states, charge density, Mulliken population [17] and elastic
properties of a-CdP,. Our present ab initio study is able to explore the unrevealed properties of a-CdP,. Our attempt
to fill the existing research gap in the study of the alpha phase of CdP, crystal is likely to be advantageous for
researchers to carry out further investigations for application in optoelectronics and piezoelectric device
technologies. The article thereon is organized as follows: In section 2, computational techniques are described. This is
followed by results and discussion in section 3. Finally, we discuss conclusions in section 4.

2. Computational details

In this study, all the calculations are performed with CRYSTAL Program [18, 19] which is an ab initio quantum
mechanical program. CRYSTAL Program (periodic ab initio HF and DFT code) uses alocalized Gaussian type

© 2020 The Author(s). Published by IOP Publishing Ltd
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Table 1. The lattice parameters (a, b and cin A) and volume V (3?) of the
conventional cell of a-CdP,.

Scheme a b c \%4

Present work PBEsol 10.0051 5.4924 5.1603 283.5689
Exp.* 9.90 5.408 5.171 276.85
Other work” 286.0

2 Reference [8].

b Reference [15].

Table 2. The fractional coordinates of the nonequivalent atoms in the unit cell of a-CdP,.

Fractional coordinates

Atom
Present work (PBEsol scheme) Exp.” Other work”
X/a Y/b Z/c X/a Y/b Z/c X/a Y/b Z/c
Cd 0.1502 0.1050 0.2621 0.1529 0.1016 0.2606 0.1529 0.1011 0.2606
PO 0.1222 0.4441 -0.3924 0.1186 0.4458 0.5850 0.1185 0.4442 0.5957
P (D) —0.0091 0.2722 -0.0916 —0.0074 0.2697 -0.0676 —0.0064 0.2693 -0.1036

2 Reference [8].
b Reference [9].

basis set to form the sets of Bloch functions. In this computational work, the DFT exchange-correlation
functional GGA (Generalized Gradient Approximation) is implemented. The study of geometrical
optimization, EOS (equation of state), bands, DOS (density of states), Mulliken population and elastic constants
is carried out with PBEsol [20] method. The basis sets (for Cd and P atoms) have been employed from
CRYSTAL-basis set library of Torino group [18, 19]. We use the basis set of 36 orbitals for Cd atom [21] and the
basis set of 18 orbitals for P atom [22]. The calculations are performed usingan 8 x 8 x 8 Monkhorst-Pack k-
point mesh [23] that corresponds to 125 k-points in the irreducible Brillouin zone (IBZ). The SCF convergence
threshold on the total energy is set to 107! Hartree. The BROYDEN parameter [18, 19, 24, 25] is employed to
achieve the rapid convergence of the self-consistent iterations. The Fock/Kohn—Sham matrix mixing factor
(FMIXING) [18, 19] of 40% has become useful for the calculations of geometry optimization. The optimized
structure is utilized to determine bulk modulus and its first pressure derivative by deploying the EOS within
+8% variation of the volume of optimized geometry. Furthermore, electronic and elastic properties [26, 27] are
investigated at the equilibrium volume. The magnitude of the strain step for elastic calculations is 0.01. The unit
cell is drawn using DLV software [28]. We use a web-oriented tool CRYSPLOT [29] for charge density and
energy band structures.

3. Results and discussion

3.1. Structural details

The structure of a-CdP, comes under the orthorhombic space group Pna2, with approximate values of lattice
parametersa = 9.90 A, b = 5.408 A and ¢ = 5.171 A [8]. Its unit cell consists of four Cd and eight P atoms [8].
Using the available geometry of a-CdP, [8], we have obtained the optimized lattice parameters and fractional
coordinates of the atoms for the unit cell of «-CdP, as shown in the tables 1 and 2. The deviations in the
calculated lattice parameters (a, b and ¢) from the experimental values [8] are within 1.6% and deviation in
conventional cell volume is 2.43%. From table 1, it is obvious that our calculation of cell volume of 2283.57 A% is
in accordance with other DFT work [15] with a small deviation of 0.86%. Thus, our computed results are in good
agreement with the other reported results in tables 1 and 2. The unit cell of a-CdP, with optimized lattice
parameters is shown in figure 1. There exist deformed tetrahedral bonds [8] as depicted in figure 1. Each
cadmium atom is bonded to its four nearest phosphorus atoms. It is also evident from figure 1 that each P atom
is bonded to two nearest Cd atoms and two nearest P atoms. Table 5 shows that atom P5 (nonequivalent atom
P-I) has the first four nearest neighbors Py, Py, Cd; and Cd, atoms. Atom Py (nonequivalent atom P-II) has the
first four nearest neighbors Pg, P5, Cd, and Cd, atoms.
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Figure 1. Schematic representation of the crystal structure of a-CdP,. The lengths a, b and care lattice parameters. (a) Schematic 3D
view of the conventional cell of a-CdP,. (b) Side view (ab plane) of a-CdP, crystal structure. (c) Side view (ac plane) of a-CdP, crystal
structure. (d) Side view (bc plane) of a-CdP, crystal structure.

3.2. Equation of state

In this study, the EOS computations for the alpha phase are performed using its computed optimized lattice
parameters and fractional coordinates of atoms. The isothermal bulk modulus By and its first pressure
derivative B’ are computed using Vinet [30], Poirier-Tarantola [31] and Birch-Murnaghan [32] EOSs. These
estimated values of By and B’ are shown in table 3. In this present work, it is evident from table 3 that our
computed values of By and B’ of a-CdP, at zero pressure with Vinet, Poirier-Tarantola and Birch-Murnaghan
EQSs are ~257.88 GPa and ~23.94, respectively. Almost the same findings each for By, B’ and V,, (equilibrium
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Figure 2. The variation of relative energy E (per unit cell) of c-CdP, with its cell volume taking the minimal value in the set of
calculations as zero. The curve shows the Vinet EOS fits the computed data points (m) in the approximate range of 261 A° to 305 A°.

Table 3. Bulk moduli (By), their first pressure derivatives (B’) and
equilibrium cell volumes (Vp) of a-CdP, at zero pressure using PBEsol

scheme.

EOS method By(GPa) B, Vo(A%)
Present work Vinet 57.88 3.94 283.5264
Present work Poirier-Tarantola 57.92 3.94 283.5254
Present work Birch-Murnaghan 57.83 3.93 283.5277

cell volume) are obtained using these three EOS schemes. For the unit cell of the alpha CdP,, with respect to
minimum energy, the curve of relative energy E (per unit cell) against its cell volume is plotted by means of

Vinet EOS as shown in figure 2. The quantities By and B’ are not mere coefficients in the equation of states,
furthermore, they are physical characteristics of the materials which depend on the structural composition of the
materials [33]. The most common typical range of B', for solid materials is from 2 to 6 [33], so obtained value
3.94 of B’y for a-CdP, is quite physically reasonable in this study.

3.3.Band structure and DOS

A study of electronic structure and density of states is useful in the determination of the semiconducting
properties of a material. In figure 3, the electronic band structure is plotted along suitable paths connecting eight
special points of high symmetry [23, 34] in the reciprocal space. The highest point of the valance band lies on a
path I'-Z and the lowest point of conduction band lies close to X point in the reciprocal space. Figure 3 indicates
the existence of an indirect band gap, E, of 1.76 eV in the orthorhombic phase of CdP,. The value 1.76 eV falls
within the typical range of energy band gap of semiconductor substances. A band gap of 1.439 eV was reported in
other computational work [10, 11].

To reveal the distribution of electronic states, the computed total DOS along with the partial density of states
(PDOS) of Cd and P atoms are depicted in figure 4. In the immediate vicinity of the top of the valence band
region and the bottom of the conduction band region, p orbitals of phosphorus atoms predominantly
contribute to DOS. With regard to DOS, the contribution of P(II) atom, in general, is larger than that of P(I)
atom, but overall PDOS patterns due to the individual nonequivalent P atoms are broadly similar. We pay
particular attention to DOS lying near the Fermi level, as these DOS are important with reference to the
electronic properties of solids. In our investigation, we also observed about PDOS that chiefly p orbitals of the
second and third sp shells (shown in table 4) of phosphorus atoms contribute to DOS lying near the Fermi level
in the valence region and furthermore, the contribution of the third sp shell (having more diffused orbitals) is
larger than that of the corresponding second sp shell of that P atom. Besides, contribution to DOS from Cd
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Figure 3. Under PBEsol scheme, the energy band structure of &-CdP, (in the range of =8 to 20 eV relative to Fermi energy level Eg).

atoms is relatively low at the top of the valence band as well as at the bottom of the conduction band. Hence, the
top of the valence band and the bottom of the conduction band are mostly of P-p characters.

3.4. Charge density and Mulliken population analysis

The computed total electron density map for (010) plane is shown in figure 5. The isodensity contour lines for
the total electron density map are sketched at intervals of 0.02 e/Bohr”. Furthermore, the total distribution

of electronic charge density is predicted through the Mulliken population analysis. There exist two
crystallographically nonequivalent distinct sites of P atom, therefore the charge distribution is accordingly
influenced by the orientation of the respective atom in the unit cell, as evident from table 4. In the present
investigation, CRYSTAL Code shows 288 orbitals for the unit cell. In table 4, orbitals and shells along with
corresponding charges are shown and it is obvious that there is also a small charge transfer of about 0.041e to d
shell of the associated basis set of each P atom in the a-CdP; crystal.

Many physical properties of a material are correlated to its constituent chemical bonds. Mulliken population
analysis plays an important role to predict the characteristics of the chemical bonding in the materials. Mulliken
overlap populations for a-CdP, are illustrated in table 5. The positive value of the total overlap population
corresponds to bonding, whereas the negative value of the total overlap population corresponds to antibonding
[17]. Mulliken population analysis is an important tool for the estimation of the distribution of charges in the
atomic orbitals. In our study, for the one formula unit of a-CdP,, there is total charge transfer of about 1.02
electrons from one Cd atom to two P atoms as evident from table 4. On the basis of the result of charge transfer,
an approximated effective valence state of a-CdP, may be represented as Cd*102P ~ 0-32p — 050 Thuys, it
indicates the reasonable presence of ionic character in the Cd-P bonding. The Mulliken overlap population also

5
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Figure 4. The plot of total DOS along with contributions from s, p and d orbitals of the nonequivalent atoms of a-CdP, (in the range
of —5t0 7.5 eV relative to Fermi energy level Eg). On the y-axis all arb. units are identical. Fermi level is shown by vertical dashed lines at
0eV.

provides a good estimation of the covalent bonding [17]. A high level of overlap population reflects the high level
of covalent character of a chemical bond [35]. In the present study, the overlap population between Cd atom and
immediate neighboring P atom is about 0.14 as shown in table 5. This value 0.14 is reasonably small compared to
1 and it can be inferred that the Cd-P bonds are also partially covalent in nature. The present study suggests the
existence of mixed ionic-covalent character of bonds (Cd-P) in the alpha phase of CdP,. Furthermore, the
Mulliken overlap population is useful to reflect its correlation with the strength of the bond. A comparison of
hardness H!' of the bonds (between Cd atom and its immediate neighboring P atoms) is carried out using the
expression H!'(GPa) = APH (vb”)*S/ 3[36] where, vg‘ and P* denote, respectively, the volume and Mulliken
overlap population of the 1 type bond and A is the proportional coefficient. In the present study, results show
that the computed hardness of bonds Cd;-P;, Cd;-Py, Cd;-P5 and Cd,-P,jarein the ratio 1.254:1.082:1.094 :
1.000. The higher level of hardness of the bond Cd;-P; among these mentioned Cd-P bonds may be attributed to
its relatively high Mulliken overlap population and short bond length.

As reported by Olofsson and Gullman [9], the bond distance (Cd-P) between close neighbor cadmium and
phosphorus atoms ranges from 2.562 A t0 2.619 A and the bond distance (P-P) between close neighbor

6
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Figure 5. Computed total electron density map of a-CdP, for (010) plane using PBEsol method. Lattice parameters a = 10.0051 A
and ¢ = 5.1603 A.

Table 4. Mulliken population analysis for a-CdP, using PBEsol method. Charges are indicated in the unit of elementary charge e.

cd P(D) P(ID)
Total charge (N. electrons) = 46.977 Total charge (N. electrons) = 15.522 Total charge (N. electrons) = 15.502
Orbital No. Shell Shell charge Orbital No. Shell Shell charge  Orbital No. Shell Shell charge
1 s 2.000 145 s 2.000 217 s 2.000
2-5 First sp 7.998 146-149 First sp 7.824 218-221 First sp 7.824
69 Second sp 7.983 150-153 Second sp 2.000 222-225 Second sp 2.001
10-14 d 9.994 154-157 Third sp 3.657 226-229 Third sp 3.637
15-18 Third sp 6.539 158-162 d 0.042 230-234 d 0.041
19-22 Fourth sp 1.426
23-26 Fifth sp 1.077
27-31 d 8.767
32-36 d 1.193

phosphorus atoms ranges from 2.167 A to 2.20 A. Itis evident from table 5 that our calculated values of bond
distances are in fair agreement with the mentioned ranges [9].

3.5. Elastic properties

3.5.1. Elastic constants and mechanical stability

The study of elastic properties is extremely useful for understanding the ability of the material to resist the
deformation. The direction-dependent elastic stretchability of crystals under different tensile strains can shed
light on its advantages for engineering applications. A high value of the ratio of bulk modulus to shear modulus
enables the crystal to meet various requirements of curvilinear shape for practical applications. Also,
piezoelectricity is dependent on the intermingling of elastic and electric phenomena. In view of the device
application of a-CdP; crystal, it is necessary to estimate its elastic constants so that its mechanical stability and
elastic properties may be examined. The orthorhombic crystal system has nine independent elastic stiffness

7
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Table 5. Mulliken overlap populations for «-CdP, using PBEsol
scheme.

Atomic pair AB Distance AB (A) Overlap population AB

Cd,-P; 2.569 0.154
Cd,-P, 2.592 0.139
Cd;-Ps 2.594 0.141
Cd,-Py, 2.618 0.135
Cd,-Pg 3.768 ~0.009
Ps-Pyo 2.183 0.068
Ps-Py 2.242 0.021
P;s-Cd, 2.569 0.154
Ps-Ps 3.608 ~0.066
P5-Cd, 3.768 ~0.009
Py-P 2.183 0.068
Py-Cd, 2.618 0.135
Po-Pyo 3.599 ~0.069

Table 6. Elastic stiffness constants (in GPa) of a-CdP; at zero pressure.

Scheme Cn Ci2 Cis Cy Cas Css Cay Css Ces

Present Work PBEsol 105.163 50.352 43.412 86.520 41.857 74.230 33.418 24.329 27.482
Other Work® PBE 101.3 31.1 37.7 91.4 32.5 87.3 37.4 28.2 19.0

2 Reference [15].

coefficients due to its orthorhombic symmetry [37]. These computed elastic stiffness coefficients Cj; of a-CdP,
arereported in table 6. According to Mouhat et al [38], necessary and sufficient elastic stability conditions for an
orthorhombic system are given by the following expressions [from (1) to (3)]:

CiiCy > Ch (D
Ci1CnCss + 2G2Ci5Co3 — G Cis — CuCl — C33Ch > 0 2
Ciu> 0, Cay> 0, Css > 0, Cog > 0 3)

The computed elastic stiffness constants (given in table 6) satisfy these necessary and sufficient elastic stability
conditions for the orthorhombic system. It shows the mechanical stability of the alpha phase of CdP, crystal.

In terms of elastic stiffness constants C;;and elastic compliance constants S;;, more quantities such as bulk
modulus, shear modulus and Poisson’s ratio may be represented. Voigt bulk modulus By and Reuss bulk
modulus By can be expressed as [39, 40]

By = é[cu + Cu + Cs3 + 2C + 2G5 + 2Cy3] 4
Br = [S11 + S + S33 4 2812 + 2813 + 2853 7! (5)
Similarly, Voigt shear modulus Gy and Reuss shear modulus Gy are given by [39, 40]
Gy = =[G + Ca + Co3 = Ga = G = Carl + £1Cua + Css + Caal ®)
Gr = 15[4(Si1 + Saz + S33) + 3(Sas + Ss5 + Ses) — 4(Si2 + Si3 + S23)]7! 7)

According to the Voigt-Reuss-Hill approximation, polycrystalline bulk and shear moduli can be estimated as
[39-41]

B = (B + By] ®)
Gy = %[GR + Gyl ©)

Macroscopic polycrystalline Young’s modulus Eyy and Poisson’s ratio vy can be expressed as [39—41]
3By — 2Gy an

" 6By + Gn)
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Table 7. Using PBEsol method, computed values of bulk modulus B (in GPa), shear modulus G (in GPa), Young’s modulus E (in GPa),
Poisson’s ratio v (unitless) of a-CdP, according to Voigt-Reuss-Hill notations”.

By Br By Gy Gr Gu Ey Er Ey vy VR vH

Present work 59.684 57.807 58.745  25.732 24.735 25.233 67.496 64942 66.219 0.3115 0.3128 0.3121

* Values of B, G, E and v have been obtained using ELATE software [46, 47].

To investigate the mechanical properties of a-CdP,, various elastic moduli are determined from elastic constants
and are summarized in table 7. The value of bulk modulus is 58.745 GPa which indicates that the material has
sufficient mechanical strength to resist structural deformation. The Cd crystal has bulk modulus of ~46.7 GPa
[42] and Young’s modulus of 262.3 GPa [42]. The values of bulk modulus and Young’s modulus for
orthorhombic P crystal are 236 GPa [43] and ~230.4 GPa [42] respectively. It can be seen in table 7 that the
calculated values of Young’s modulus and bulk modulus of a-CdP, are greater than the respective values of
Young’s moduli and bulk moduli of constituent elements (Cd and P crystals). But, in comparison to the typical
values of bulk modulus 2297.8 GPa [44] and Young’s modulus /2163 GPa [45] of the semiconductor Si, it is
obvious that our calculated respective values of bulk modulus 58.745 GPa and Young’s modulus 66.219 GPa of
a-CdP, are considerably smaller. Since Young’s modulus reflects the stiffness of the material, so a-CdP, crystal
has less stiffness than Si crystal.

It is also obvious from table 7 that the values of computed Poisson’s ratios are about 0.31. Therefore these
calculated values of Poisson’s ratios are within the theoretically essential limits [48] for materials. In general, the
ratio of bulk modulus B to shear modulus G may be used to make predictions about the nature of polycrystalline
material in terms of brittleness and malleability [49]. A high value of B/ G indicates the malleable nature of the
polycrystalline materials [49]. For a value of B/G greater than about 1.75, malleable characteristics of a
polycrystalline material is expected [49]. In the present study, the value of By / Gy is 2.328 which is greater than
1.75, therefore it indicates the malleable nature of a-CdP,. Thus the value 2.328 of B/G for the alpha phase of
CdP; crystal indicates that the crystal has reasonable malleability and this favorable property opens the
possibility to allow the curved shape of a-CdP, crystal in the semiconductor devices.

3.5.2. Elastic anisotropy

Most of the materials show elastic anisotropic behavior. Atomic bonding arrangement in different crystalline
planes is an important factor for the determination of the elastic anisotropy. Elastic anisotropy plays a key role in
various directional dependent mechanical-physical phenomena. Elastic constants such as Young’s modulus,
shear modulus and Poisson’s ratio may have directional dependent variations, hence they have an influence on
the mechanical characteristics of the crystalline materials. With the help of the theory of micro-cracks analysis
from the elastic anisotropy, the enhancement in the mechanical durability of the crystals for device application
may be understood [50]. A comprehensive understanding of the elastic anisotropy of the materials is of great
significance because it has an important outlook for device designing. The preferred orientation of the crystals is
avital aspect for optimum technological usage of the materials in microelectromechanical systems, hence the
knowledge of the elastic anisotropy is essential for imparting the desired physical and electrical properties to
devices. For an orthorhombic crystal system, the directional Young’s modulus E in the direction of the unit
vector [;is given by the expression [37]

E = [1]!S1) + 2121581, + 21213815 + 13 Say + 21313805 + 13833 + 171384y + 1213S55 + 1213Ses] " (12)

where [}, [, and 3 are direction cosines and quantity S;; are known as elastic compliance constants.
For an orthorhombic crystal system, the directional linear compressibility 5 in the direction of the unit
vector J;is given by the expression [37]

B=(Si1+ Siz + Si)IE + (Si2 + Sa2 + S»3) 5 + (Si3 + Sas + S33)13 (13)

Table 8 shows the computed Young’s Modulus and linear compressibility of a-CdP, along [100], [010] and
[001] crystallographic directions. Figure 6 shows the variations of Young’s modulus with direction. Figures 6(a)
and 7(a) are plotted using ELATE software. It is evident from the figures 6(a) and 7(a) that schematic plots of
directional Young’s modulus and linear compressibility are not spherical in shape; therefore, they reflect the
finite elastic anisotropy for the alpha phase of CdP,. The elastic anisotropy of a crystal may be characterized by
different approaches. For instance, to compute the elastic anisotropy, the degree of elastic anisotropy may be
defined by expressions [51, 52]
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Young's Modulus E in ab plane

Young's Modulus E in ac plane

(b)

Young's Modulus E in bc plane

Figure 6. Directional dependence (polar graph) of the computed Young’s modulus E (in GPa) of a-CdP;. (a) 3D View representation
of directional Young’s modulus (b) Projections of directional Young’s modulus on ab, acand bc planes.

Table 8. The computed values of directional Young’s modulus, linear compressibility and elastic anisotropy parameters for a-CdP,
under PBEsol scheme.

Eigo Egio Eoo: Broo Boto Boot Ag Ag
(GPa) (GPa) (GPa) (TPa)~! (TPa)~! (TPa)~! (in%) (in %) AU
Present work 69.135 54.526 49.195 3.411 5.529 8.359 1.60 1.98 0.234
By — B
Ap =R (14)
Bv + Br
Gy —G
Ag = YR (15)
Gy + Gr

For elastic isotropic materials, both Ag and Ag are zero. Our calculated values of Ag and A for the degree of
elastic anisotropy are shown in table 8. It is evident from table 8 that values of Az and Ag are nonzero, therefore,
a-CdP, crystal has finite bulk anisotropy as well as shear anisotropy. In different way, Ranganathan et al [53]
defined the universal elastic anisotropy index as

AV = — 45— —6 (16)

The index AY is applicable to all crystalline symmetry and its minimum value is zero for elastic isotropic
materials [53]. Table 8 shows the calculated value of 0.234 of AY for the alpha phase of CdP,. Both tables 8 and 9
illustrate the presence of finite elastic anisotropy characteristics in a-CdP,.

Significant differences are found among the computed values of E 9, Eg19 and Egg; as shown in table 8. From
figures 6 and 7 as well as from table 8, the following conclusions about directional Young’s modulus and linear
compressibility of a-CdP, crystal are drawn:

Eig0 > Eg10 > Eqosa > b > ¢

10
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Linear compressibility # in ab plane Linear compressibility 8 in ac plane Linear compressibility g in bc plane
(b)

Figure 7. Directional dependence (polar graph) of the computed linear compressibility 3 [in (TPa) '] of a-CdP,. (a) 3D View
representation of directional linear compressibility (b) Projections of directional linear compressibility on ab, acand bc planes.

Table 9. Variations of the shear modulus G (in GPa), Young’s modulus E (in GPa), linear compressibility 3 [in
(TPa)~ '] and Poisson’s ratio v (unitless) of a-CdP, using PBEsol method".

Gmin Gmax Emin Emax ﬁmin ﬂmax Vmin Vmax

Present work 19.087 33.418 49.195 73.140 3.411 8.359 0.0908 0.4179

* Minimum and maximum values of G, E, #and v have been obtained using ELATE software.

Bio0 < Boro < Booz a > b > ¢

Hence, crystal has more hardness (less compressible) along a axis than along b and caxes. It is evident from
table 9 that there is a substantial difference between the minimum and maximum values of the directional shear
modulus G. This is also the case for Young’s modulus E and linear compressibility 8. For G, E and (3, respective
maximum variations are 75.08%, 48.67% and 145.06% relative to their minimum values. These variations
themselves reveal the presence of considerable elastic anisotropy in the alpha phase of CdP,.

For Young’s modulus E, it is readily apparent from the figure 6(b) that anisotropy is greater in bc plane than
in ab and ac planes, since the angular variation of E in bc plane is more pronounced among ab, bc and ac planes.
In ab plane, E increases from 69.135 GPa to ~72 GPa (maximum value in ab plane) as the angle (with a axis)
increases from 0° to ~#31°, then E decreases from /72 GPa to 54.526 GPa as the angle varies from ~31° to 90°.
The maximum value ~72 GPa of E is again observed at an angle (with a axis) of ~149° in the ab plane. It is
observed in the ac plane that E decreases continuously from 69.135 GPato 49.195 GPa (E,,;, in table 9) as the
angle (with a axis) increases from 0° to 90°. In the be plane, E increases from 54.526 GPa to 73.140 GPa as the
angle (with b axis) increases from 0° to 2247°. Furthermore, as the angle increases from ~247° to 90° in the bc
plane, the value of E decreases from 73.140 GPa to 49.195 GPa (E,;,, in table 9). The maximum value 73.140 GPa
(Emax in table 9) of E is observed at the angles (with b axis) of ~247° and 22133° in bc plane.

In the case of linear compressibility 3, it emerges clearly from figure 7(b) that the ac plane has greater
anisotropy than ab and bc planes. For the ab plane, Bincreases continuously from 3.411 (TPa) "' (B in table 9) to
5.529 (TPa) ' as the angle (with a axis) increases from 0° to 90°. In ac plane, an increase of the angle (with a axis)

11
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Table 10. The computed values of density, Debye temperature, shear sound velocity,
longitudinal sound velocity and average sound velocity of a-CdP, under PBEsol method.

P(kg m73) Vs(m 571) I/[(l’l’l 571) Vm (Il’l Sil) eD (K)

Present work 4119 2475 4736 2769 288.1

from 0° to 90° results in a continuous increase of linear compressibility 3 from 3.411 (TPa) ' to

8.359 (TPa) ' (Bmax in table 9). In the case of be plane, as the angle (with b axis) varies from 0° to 90°, Bincreases
continuously from 5.529 (TPa) ' to 8.359 (TPa) . The different types of physical quantities may have different
levels of anisotropy corresponding to a given plane of the same material. The present investigation shows that
among ab, ac and be planes, the anisotropy is high in ac plane for linear compressibility, whereas the anisotropy is
high in bc plane for Young’s modulus.

3.5.3. Debye temperature

Debye temperature, which is a useful variable, correlates the thermodynamic properties with elastic properties
of the crystal [54]. The Debye temperature of the material is related to its thermal conductivity [55]. Thermal
conductivity is an important parameter for heat transfer phenomena. Hence, concerning the dissipation of heat,
the thermal conductivity is a significant factor for determining the speed and efficiency of the electronic devices.
The Debye temperature is a function of the aggregate elastic properties (polycrystalline bulk modulus By and
shear modulus Gyy) [54]. The Debye temperature 6, is related to average sound velocity 1, in a crystal by the

expression [54]
h[ 3n NAp) 1/3
Op = —| —| =L m 17

b kl:47r(M ] 5 (17

where his Planck’s constant, N is Avogadro’s constant, p is the density, k is Boltzmann’s constant, M is the
molecular mass, # is the number of atoms in the molecule. Average sound velocity v, in a polycrystalline

substance may be expressed as [54]
-1/3
1( 2 1
Vm=|—|—=+ — 18
=4z )] a9

where 1, and v; represent the average shear and longitudinal sound velocities, respectively. These velocities may
be expressed in terms of density p, polycrystalline bulk modulus By and shear modulus Gy [54]:

1/2
v = [@] (19)
p
1/2
v = 3By + 4Gy (20)
3p

For the alpha phase of CdP», the calculated values of mean sound velocity and Debye temperature are 2769 m s~

and 288.1 K respectively. The calculated values of shear sound velocity and longitudinal sound velocity are given
in table 10.

4. Conclusions

The present study presents the first principle investigation of electronic and elastic properties of a-CdP, by
employing GGA-PBEsol functional in the CRYSTAL code. The obtained equilibrium volume of the unit cell is in
quite agreement with experimental data. Our work predicts the existence of the indirect band gap of 1.76 eV in
a-CdP; crystal. The p orbitals of phosphorus atoms make the major contribution to DOS lying at the top of the
valence band and the bottom of the conduction band. Broadly speaking, P(II) atom contributes more to DOS in
comparison to P(I) atom. Mulliken population analysis shows that the total charge transfer of nearly 1.02
electrons takes place from one Cd atom to two P atoms in each formula unit of o-CdP,. Mulliken population
analysis also indicates that Cd-P bonds have mixed ionic-covalent characters. Our investigation reveals that the
Cd;-P; bond has a higher level of hardness among Cd,-P;, Cd;-Py, Cd;-Ps and Cd;-P;, bonds.

Our present findings of anisotropic properties may contribute to better predictions for the preferred
orientation of crystals for designing optoelectronic devices. In this investigation, the computed value of
Ranganathan’s universal elastic anisotropy index A is 0.234. The considerable variation is observed among the
computed values of directional Young’s moduli E; oy, Eg10 and Egg;. It can be inferred from the present
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investigation that the alpha phase of CdP, has definite elastic anisotropy and crystal is more hard (less
compressible) along a axis than along b and caxes. Among ab, ac and bc planes, the anisotropy is high in bc plane
for Young’s modulus, whereas the anisotropy is high in ac plane for linear compressibility. The present study
indicates the malleable nature of the alpha phase of CdP,. The computed value of Debye temperature of a-CdP,
is 288.1 K. The Quite adequacy of the values of Debye temperature and elastic moduli is in favor of a-CdP, to
become a promising material for device application in optoelectronics. Hence, these findings provide an outlook
for experimental implications.
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Introduction

Monoclinic ZnAs; is a semiconducting compound of the II-
V group [1]. ZnAs; has a monoclinic crystal structure with
space group P24/c (C3;,) [2-3]. Its unit cell has eight formula
units [2]. The energy band gap is nearly 1eV [4-5]. There is
tetrahedral coordination of atoms with a slight distortion of
the tetrahedral structure [6]. ZnAs» crystals are useful for
optoelectronic applications. such as light modulators,
optical filters, lenses, etc. [7]. Anisotropy in the
thermoelectric power of these crystals is useful for
nonselective radiation detectors [8]. Soshnikov ef a/ studied
the elastic properties of ZnAs; crystals with ultrasound
measurements [9]. These crystals may be utilized for the
fabrication of polarization-controlled switches due to their
polarization photosensitivity [10]. Photosensitive Schottky
barriers may be formed on monoclinic ZnAs» crystals [10].
The variation of index of refraction of ZnAs: crystal may be
utilized in fabricating infrared polarizers [11-12]. Our
interpretation of the elastic properties of ZnAs; may have
considerable practical utility in device design for future
research. For optimum performance of the device,
knowledge of the direction-dependent elastic anisotropy of
ZnAs> crystals provides advantages in determining the
preferred orientation of the crystals.

Computational details

Ab-initio investigation of monoclinic ZnAs; is performed
with CRYSTAL Code [13-14]. In the present study. the
DFT exchange-correlation functional GGA is employed.
The basis sets for Zn and As atoms have been utilized from
the CRYSTAL-Basis Set Library [13-14]. Using initial
geometry [3], optimization is performed and optimized
lattice parameters and fractional coordinates are obtained.
In this computation. the PBEsol [15] technique is
implemented. The SCF convergence TOLDEE is set to 8.
The calculations are performed using an 8 x 8§ x §
Monkhorst-Pack k-point mesh [16]. This k-point mesh
corresponds to 125 k-points in the irreducible Brillouin
zone. The BROYDEN parameter [13-14, 17-18] is also
implemented to obtain convergence. The elastic properties
[19-20] are studied at the equilibrium volume with a strain
step of 0.01. The ELASTCON keyword is used for the
computation of the elastic properties of monoclinic ZnAs;
crystals. ELATE software [21-22] is used for the analysis of
elastic quantities.

Results and Discussion
Elastic Properties

The analysis of elastic anisotropy is wuseful for
understanding the direction-dependent elastic stretchability
of crystals. This analysis is useful for engineering device
design. The monoclinic crystal system has thirteen
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lattice parameters and fractional coordinates, the elastic
stiffness constants of the monoclinic ZnAs» crystal are
obtained, which are shown in table 1.

independent elastic stiffness constants [23]. Using the initial
geometry [3] with lattice parameters a=9.287 A, b=7.691
A, ¢ = 8.010 A, optimized lattice parameters have been
obtained by CRYSTAL Code [13-14]. Using the optimized

Table 1: Elastic stiffness constants (in GPa) of ZnAs: at zero pressure.

Scheme Cu Ciz Ci3 Cis (8v)) Co3 Cas Cs3 Css Caa Cis Css Cés
Present PBEsol 126.72 6347 35995 —441 136.81 3835 6.07 14584 1.75 26.73 4.23 44,58 44.18
Work
Other 95.63 3147 102.5 112.6 20.76 40.45
Work?
aRef. [9, 24].

Table 2. Computed values® of shear modulus G (in GPa), bulk modulus B (in GPa). Young’s modulus E (in GPa) and
Poisson’s ratio V' (unitless) of ZnAss.

B. B, B, G G G E, E E v, v v

V R H v R H V R H v R H

Present Work® 81.44 81.28 8136 39.60 36.67 38.14 10224 9563 9895 0291 0304 0.297

? Values of B, G, E and V have been computed with the help of ELATE software [21, 22

Table 3. Variations® of Young’'s modulus E (in GPa), shear modulus G (in GPa), Poisson’s ratio v (unitless) and linear
compressibility A[in (TPa)™ ] of ZnAs..

G, G E E B.. B v v

min max min max min max

Present 25.76 51.76 70.92 12147  3.60 4.45 0.051 0.491
Work

‘These values of G, E, fand V' have been computed through ELATE software.

Table 1 shows that the elastic constant Cs3 is greater than
other elastic constants. It is obvious from table 1 that the
value of C» is greater than Ci; at zero pressure. Elastic
stiffness constants Cu4 and Css are significantly smaller than
the other elastic stiffness constant Ci.

Voigt bulk modulus (Bv) and Reuss bulk modulus (Br) may
be represented as a function of elastic stiffness constants Cy
and elastic compliance constants Sy [25. 26]

1
By = §[C11 + Gy + G35 + 20, + 2053+ 2055] (D)

Bg = [S11 + S50 + S35 + 25, + 25,3 + 2523]_1 (2)

Reuss shear modulus (Gr) and Voigt shear modulus (Gv)
are represented by [235. 26]

Gr = 15[4(S11 + S22 + S33) + 3(Sas + Ss5 + See)
—4(S15 + S13 + S23)] 7" (3)

1
Gy = 1= [Ci1 + Coz + C33 — Cip — Ci3 — Co3]

1
+ 5 [Cas + Cos + Coel 4)

The Voigt-Reuss-Hill approximation provides the estimated
polycrystalline shear (Gu) and bulk moduli (By) [25-27]

Gr :é[Gn + Gyl (5)
i
By =3[Br + Byl (6)
Also, macroscopic polycrystalline Poisson’s ratio v, and

Young’s modulus Ex may be represented as follows [25-

27]:

_ 9ByGH

H ™ 3py+6y (7
_ 3By—2Gy
VH = 3GBgt6n) (8)

The computed elastic moduli from elastic constants are
shown in table 2.

The malleable property of a polycrystalline substance is
expected to have a ratio of bulk modulus to shear modulus
greater than about 1.75 [28]. The obtained value of Young’s
modulus shows sufficient stiffness of ZnAs;. The value of
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81.36 GPa of bulk modulus shows the ample material
strength of ZnAs» crystals under deformation. The
computed value of 0.297 of Poisson’s ratio is within the
theoretical limits [29] for materials. Maximum and
minimum values of Young's modulus., shear modulus,
Poisson’s ratio and linear compressibility of ZnAs, are
shown in table 3.

The elastic anisotropy of a crystal may be expressed as [30,
31]

_ By—Bgr

5 By+Bg (9)
_ Gv—Gr
AG - Gy+Gr (10)

The calculated values of anisotropy parameters 4g and Ag
are 0.00098 and 0.0384 respectively.

Ranganathan er al [32] expressed the universal elastic
anisotropy index in the following manner:

B G

A”=3—2+56—:—6 (11)
The obtained value of Ranganathan’s universal elastic
anisotropy index for ZnAs; is 0.402. All these finite values
of anisotropy parameters indicate the presence of finite
anisotropy in ZnAs crystals. For isotropic materials, the
value of each of the anisotropy parameters Ag, Ag and 4Yis
zero. With the help of ELATE software [21-22], the
directional dependence of Young’s modulus E and linear
compressibility f is plotted in figures 1, 2 and 3. It is evident
from figures 1 and 2 that directional Young’s modulus has
anisotropy. Similarly, figures 3 and 4 show the sufficient
anisotropy of linear compressibility in ZnAs; crystal.

Figure 1. Directional dependence of the Young’s modulus E (in GPa) of ZnAs:

Figure 2. 3D View of the directional Young's modulus E (in GPa) of ZnAs»
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i AL

Figure 3. Directional dependence of the computed linear compressibility 5 [in (Tpa)_l ] of ZnAs:

Figure 4. 3D View of the directional linear compressibility £ [in (Tpa)_l ] of ZnAs>

Conclusion

The investigation reveals the various elastic properties of
ZnAs> by using the GGA-PBEsol functional in the
CRYSTAL program. Our investigation predicts the
malleable nature of ZnAs;. In the present findings. the
obtained value of Ranganathan’s universal elastic
anisotropy index for ZnAs; is 0.402. It can be concluded
from the study that ZnAs, has definite elastic anisotropy.
Our present findings show that variation in the value of
Young's modulus from its minimum value to its maximum
value is 50.55 GPa. For the shear modulus, the variation in
the value from minimum to maximum is 26 GPa. Our
investigation of the anisotropic properties of ZnAs; may
shed light on the preferred orientation of crystals for
designing engineering devices using ZnAs; crystals.
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