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PREFACE 
 

This thesis provides an Ab-Initio investigation of the structural, electronic and elastic 

properties of some II-V2 semiconducting compounds. The chapters are arranged into 

six parts. The properties mentioned in these chapters (3 to 5) are kept as independent 

as possible. The thesis addresses mostly DFT studies of α-CdP2, α-ZnP2 and ZnAs2. 

The data in the tables provide an idea of the typical estimated values of the various 

physical quantities in this thesis. For concreteness and completeness, captions in the 

tables and figures are included.  

This thesis also addresses computational tools relevant to the investigation. The 

area of computational materials science has seen revolutionary developments in the 

past few decades. The driving force in computational materials science is the rapid 

growth of cost-effective computational technology. Computational materials science 

invites visualization and independent discovery through modern software. Some 

results in this thesis have been mentioned from published research papers in scientific 

journals. In the thesis, a list of figures and a list of tables are provided before the start 

of Chapter 1. The abbreviations used in the thesis are also listed. Tables are presented 

in conventional units. The symbol e represents the charge of a proton. It is taken as a 

positive. 

The first chapter deals with an introduction and review of the literature. 

Moreover, component elements of II-V2 semiconductors are also introduced in the 

first chapter. A review survey of II-V2 semiconducting compounds has been 

introduced in the first chapter. Semiconductors have many technological applications. 

Chapter 1 illustrates that the usefulness of semiconductors in device applications has 

become an important area of research. The motivation for the work and outline of the 

thesis have been incorporated in Chapter 1. 

The purpose of the second chapter is to give a glimpse of the basic research 

methods that are applied in this study. Chapter 2 includes the theoretical framework 

for this investigation. Chapter 2 addresses useful software/tools such as CRYSTAL 

Code, DL Visualize, CRYSPLOT and ELATE. In this thesis, a brief description of 

computational tools is also illustrated in Chapter 2. The second chapter deals with the 

computational procedure adopted in the thesis. 



 

vii 
 

Chapter 3 is devoted to the structural properties of the compounds. Chapter 3 

incorporates optimized lattice parameters for compounds. The third chapter also deals 

with the equation of states. 

Chapter 4 addresses the electronic properties of II-V2 semiconducting 

compounds. Various descriptions of electronic properties have been included to make 

it possible to explore the electronic characteristics of the compounds. The description 

of electron transfer is part of the Mulliken population discussion for                            

II-V2 semiconducting compounds. Electronic band structure calculations are carried 

out along high symmetry directions for special points in the Brillouin zone. Figures 

for the density of states illustrate the contribution of nonequivalent atoms and atomic 

shells to the density of states. The density of state interpretation enhances the 

understanding of the contribution of electronic shells to conduction properties. 

The fifth chapter deals with the elastic properties of the materials. Mathematical 

expressions are an intrinsic part of elasticity. Essential mathematical equations have 

been incorporated in Chapter 5 to describe the polycrystalline properties, anisotropy, 

etc. The anisotropy of compounds is elaborated through two-dimensional and three-

dimensional view diagrams. Attention has also been paid to describing anisotropic 

parameters in the elasticity section. In Chapter 6, attention is turned to important 

conclusions and future scope. Standard notations and symbols are used in the thesis. 

A consistent reference style is followed in references. The bibliography section 

includes the DOI of sources as much as possible. Efforts have been made to form this 

thesis systematically. 
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compressibility β [in 1(TPa) ] of α-ZnP2 at zero pressure 
under the PBE scheme. 
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Figure 5.14 Polar graphs (2D view) for the directional-dependent shear 
modulus G (in GPa) of α-ZnP2 at zero pressure under the 
PBE scheme. 
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Figure 5.15 Polar graph (3D view) for the directional-dependent shear 
modulus G (in GPa) of α-ZnP2 at zero pressure under the 
PBE scheme. 
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Figure 5.16 Polar graphs (2D view) for the directional-dependent 
Poisson’s ratio ν (unitless) of α-ZnP2 at zero pressure under 
the PBE scheme. 
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Figure 5.17 Polar graph (3D view) for the directional-dependent 
Poisson’s ratio ν (unitless) of α-ZnP2 at zero pressure under 
the PBE scheme. 
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Figure 5.18 Computed bulk modulus B of ZnAs2 as a function of 
applied pressure P under the PBE functional. 
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Figure 5.19 Polar graphs (2D view) for the directional-dependent 
Young’s modulus E (in GPa) of ZnAs2 at zero pressure 
under the PBE scheme. 
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Figure 5.20 Polar graph (3D view) for the directional-dependent 
Young’s modulus E (in GPa) of ZnAs2 at zero pressure 
under the PBE scheme. 
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Figure 5.21 Polar graphs (2D view) for the directional-dependent linear 
compressibility β [in 1(TPa) ] of ZnAs2 at zero pressure 
under the PBE scheme. 
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Figure 5.22 Polar graph (3D view) for the directional-dependent linear 
compressibility β [in 1(TPa) ] of ZnAs2 at zero pressure 
under the PBE scheme. 
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Figure 5.23 Polar graphs (2D view) for the directional-dependent shear 
modulus G (in GPa) of ZnAs2 at zero pressure under the 
PBE scheme. 
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Figure 5.24 Polar graph (3D view) for the directional-dependent shear 
modulus G (in GPa) of ZnAs2 at zero pressure under the 
PBE scheme.  
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Figure 5.25 Polar graphs (2D view) for the directional-dependent 
Poisson’s ratio ν (unitless) of ZnAs2 at zero pressure under 
the PBE scheme. 
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Figure 5.26 Polar graph (3D view) for the directional-dependent 
Poisson’s ratio ν (unitless) of ZnAs2 at zero pressure under 
the PBE scheme. 
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1.1 Introduction 

The choice, formation and use of materials have been part of civilization. There is the 

continuous advancement of material classes and properties [1]. Materials are 

represented through their properties, such as electronic band gap, density, thermal 

conductivity, coefficient of thermal expansion, Young’s modulus, Poisson’s ratio, etc. 

The productive application of materials requires that they fulfill specific properties. 

Exposure to material properties provides upgraded technology with improved 

performance [1]. The usefulness of semiconductors in devices has encouraged 

accelerated research endeavors to characterize their properties better [2]. A quantum 

mechanical ab-initio computer program provides the computation scheme to 

investigate many properties of crystalline systems [3]. 

Many solids have the crystalline nature. In crystals, the atoms follow a three-

dimensional periodic structure. This regularity helps to develop methods to 

investigate the properties of crystalline solids. In actual situations, solids do not 

extend to infinity [4]. Real solids terminate on surfaces, which make up defects in the 

three-dimensional periodic crystalline structure [4]. The typical ratio of atoms in the 

bulk to atoms on the surface of a real solid is 108: 1 [4]. Therefore, despite the surface 

defect, it is reasonable to assume that a real solid behaves nearly like an infinite 

periodic solid [4]. To characterize the crystal, the positions of the atoms of the basis in 

the conventional cell are to be identified [5]. The crystal structures have significance 

for technologically advanced materials. 

The main method for examining the arrangement of atoms in crystalline solids is 

X-ray diffraction [6]. The type of lattice and separation between lattice planes can be 

identified with the X-ray diffraction technique. In X-ray diffraction, the wavelength of 

an electromagnetic wave is of the order of the distance between atoms. X-ray 

reflection follows Bragg’s law.  

The quest for appropriate materials for photovoltaic (PV) applications has 

broadened over the past several years [7]. Semiconductors have many technological 

applications, such as solar cells, transistors, light-emitting diodes (LEDs), 

photoconductors, charge-coupled devices, strain gauges, lasers, etc. [8]. Generally, 

semiconductor devices are relatively economical and have reliability [8]. Applications 

of the optical properties of solids are commercially valuable [9]. Photonic crystals for 

optical integrated circuits have become an important area of research [9]. With 
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concern about the increasing energy requirements of society, researchers are paying 

attention to further investigation of renewable energy sources, like solar devices,     

etc. [10]. 

Crystal orbitals (solid wave functions) extend throughout the solid, so these may 

be referred to as delocalized orbitals [11]. For accuracy in electronic structure 

treatment, the inclusion of electron-electron interactions is very essential [12]. The 

electronic properties of solids are influenced by crystal potential. Generally, an 

unfilled band of orbitals is known as a conduction band [6], whereas a filled band is 

known as a valence band [6]. The band gap depends on the temperature [8]. The band 

structure can illustrate the manner in which electrons in the solids will react to 

external disturbances [4]. Here, external disturbances mean the emission or absorption 

of light [4]. This response of electrons may be correlated with the electrical and 

optical properties of solids [4]. The electronic band structure of solids has utility in 

determining the reflectivity and dielectric properties [4]. 

The plot between the energy E and the wave vector k is known as the E-k diagram. 

The E-k plot is also known as the dispersion relation or band structure for electronic 

states [13]. The energy eigenvalue ( )nE k


 is associated with band index n [11]. Each 

band has a specific energy range [11]. In crystals, the number of bands is large [11]. If 

the lowest of the conduction band and the highest of the valence band are at the same 

wave vector in the E-k diagram, it is called a direct band gap semiconductor [8]. In the 

indirect band gap semiconductor, the lowest of the conduction band and the highest of 

the valence band are not at the same wave vector in the E-k diagram [8]. The E-k 

diagram has utility in the determination of the band gaps (namely, direct and indirect) 

of semiconductors. To illustrate specific physical phenomena, the Brillouin zone (BZ) 

scheme in reciprocal space is utilized. There are special k


 points, which are high 

symmetry points in three-dimensional Brillouin zones. Electronic band structure 

calculations are generally carried out along high symmetry directions for these special 

points (namely , , , , , ,X Z M    etc.) in the Brillouin zone and dispersion E-k curves are 

plotted [4]. The characteristics of electronic energy bands along the high-symmetry 

directions (joining special points) of the Brillouin zones are significantly useful [4].  

As a function of energy, the density of electronic states is a useful concept for 

analyzing the electronic band structure of solids. The density of states is given by 
dN
dE
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where dN represents the number of states existing between energy levels E and

.E dE  Position of Fermi energy in the density of states versus energy plot plays a 

key role in determining transport properties of solids [13]. The highest occupied 

energy surface in a wave vector k


 is the Fermi surface for solids at zero Kelvin 

temperature [8] and energy is constant throughout this Fermi surface [14]. The 

electrons near the Fermi surface are responsible for many electrical properties [8]. 

Both extended zone and reduced zone methods are implemented to visualize the 

Fermi surface [14]. The Fermi surface that is experimentally measured gives a goal at 

which the first principle electronic band structure computation can target [15]. For the 

deduction of the geometry of the Fermi surface, one of the powerful techniques is the 

de Haas-van Alphen effect [15].  

Many properties are represented by tensors. Tensors are categorized based on their 

rank [16]. Different physical properties may be explained by different order tensors, 

even for the same material. For construction objectives, the applicability of a given 

solid is also determined by its mechanical properties [2]. Properties that depend on 

crystal structure are known as structure-sensitive properties [2]. Some specific 

predictions about the properties of crystals may be made for known crystal    

structures [2]. 

There is a change in the shape of the crystal when a stress is applied to it [16]. 

Strain is recoverable under a certain limit of stress, i.e., under elastic limit [16]. 

Hooke’s law applies only to small strains [17]. For large strains, stress-strain curves 

enter into the nonlinear region [17]. Elasticity is a centrosymmetric type of      

property [16]. Elasticity may be dealt with tensors. Elasticity theory forms a 

mathematical model of the deformation of matter [18]. This mathematical model of 

elasticity has been commonly formulated using tensor language and calculus. The 

solid body is assumed to be a continuous medium [19].  

The characterization of the mechanical properties of solids is generally carried out 

with constitutive stress-strain relations [18]. Directional stress-strain responses 

typically arise from microstructural peculiarities within the anisotropic solid [18]. The 

deformation response of many solid samples depends upon the orientation [18].         

Property that changes with direction is called an anisotropic phenomenon [20]. In 

general, crystals are said to be anisotropic because of their direction-dependent 

properties. Such properties of crystals vary with direction. Anisotropy concerns the 
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type of symmetry of the crystal. As crystals have some direction-dependent 

properties, all crystals are anisotropic [16]. Anisotropy is an intrinsic quality of a 

continuum [20]. For anisotropic crystals, applying any stress component results in 

other strain components. The elastic anisotropy of materials has a significant role in 

their functions [21]. The elastic anisotropy may affect certain material properties, 

such as, phase transformations [22] and fracture toughness [23].  

Young’s modulus and linear compressibility are direction-dependent quantities. 

For all classes of crystals, Young's modulus is anisotropic, even for cubic crystals 

[16]. The theory of elasticity elaborates on the utility of crystals for the analysis and 

design of advanced materials [24]. The elastic perspective is valuable as it provides 

structural performance. Now, new computational methods have emerged as research 

tools to examine the elastic properties of materials. In computational materials 

science, it is expected that computationally predicted results for materials may be 

experimentally validated in the future. Differences in the performance of the materials 

may be attributed to specific internal structures of the materials. Complex variable 

theory also acts as a very useful technique for solving elasticity problems [18]. From 

the point of view of technological applications, the determination of ductile and brittle 

materials by means of the theory of elasticity is also important. 

      II-V2 semiconductor compounds are made from the 12th and 15th column elements 

of the periodic table. These compounds have utility in the fabrication of 

optoelectronic devices [25, 26, 27]. From the thermal point of view of ternary phase 

diagrams, compounds of As and P with Cd and Zn are of importance [28]. 

1.1.1 Group II and Group V Elements for II-V2 Semiconducting 

Compounds 

Zn, Cd and Hg are elements of Group IIB. Group 12 is also known as Group IIB.     

Zn, Cd and Hg each have an electronic ground state 1
0S  [29, 30]. The electron 

configurations of zinc (30), cadmium (48) and mercury (80) are   10 2Ar 3 4d s , 

  10 2Kr 4 5d s  and   14 10 2Xe 4 5 6f d s , respectively [29, 30]. The first ionization 

energies of Zn, Cd and Hg are 9.394197 eV, 8.993820 eV and 10.437504 eV, 

respectively [30]. The second ionization energy (IE) of Zn is 17.96440 eV [29]. The 

second ionization energies of Cd and Hg are 16.90832 eV and 18.756 eV, respectively 
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[29]. The crystal structure of Zn and Cd is hexagonal [29]. At a temperature of 293 K, 

the shortest interatomic distances in solids for Zn and Cd crystals are 2.66 Å and 2.97 

Å, respectively [29]. Young’s modulus E, shear modulus (modulus of rigidity) G and 

Poisson’s ratio ν of zinc are 92.7 GPa, 34.3 GPa and 0.29, respectively [29]. Young’s 

modulus E, modulus of rigidity G and Poisson’s ratio ν of cadmium are 62.3 GPa, 

24.5 GPa and 0.30, respectively [29]. Zinc is a ductile metal, whereas cadmium is a 

soft metal [29]. Zn and Cd metals are bluish-white [31]. At temperature 293 K, the 

electrical resistivities of zinc and cadmium are 85.43 10 m  and 86.8 10 m  , 

respectively [29]. Cadmium has utility in Ni-Cd rechargeable batteries [31, 32]. Zn 

has utility in galvanizing the other metals [32]. Zinc is used to form alloys [31, 33]. 

Hg is a virulent poison [31]. Group 15 is also known as Group VA [29]. Nitrogen, 

phosphorus, arsenic, antimony and bismuth are elements of Group VA. The electron 

configurations of N, P, As and Sb are   2 3He 2 2s p ,   2 3Ne 3 3s p ,   10 2 3Ar 3 4 4d s p and 

  10 2 3Kr 4 5 5d s p , respectively [29, 30]. Elements N, P, As, Sb and Bi each have an 

electronic ground state 4
3/2S  [29]. The first ionization energies of N, P, As, Sb and Bi 

are 14.53413 eV, 10.486686 eV, 9.78855 eV, 8.608389 eV and 7.285516 eV, 

respectively [30]. The crystal structure of P is orthorhombic (C) [29]. As, Sb and Bi 

have a trigonal (R) crystal structure [29]. N has characteristics of gases, whereas P 

and As have characteristics of semiconductors [29]. Sb and Bi have semimetal and 

brittle metal characteristics, respectively [29]. At room temperature, the electrical 

resistivities s  of As, Sb and Bi are nearly 72.60 10 m  , 73.70 10 m   and 
61.068 10 m  , respectively, in the solid state [29]. 

1.2 An Overview of Some II-V2 Semiconducting Compounds  

1.2.1 II-V2 Phosphides 

Two different crystalline phases of ZnP2 are designated as α-ZnP2 and                       

β-ZnP2 [28, 34]. The α-ZnP2 and β-ZnP2 have tetragonal and monoclinic structures, 

respectively [28, 34]. A tetragonal crystal structure of the alpha phase of ZnP2 was 

reported by Stackelberg et al. [35] and White [36]. At temperature 293 K, an indirect 

energy band gap of 1.65 eV (polarization E c ) is found in α-ZnP2 [37]. The space 

group of β-ZnP2 is 5
2hC  [38]. Monoclinic ZnP2 has lattice parameters nearly 
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8.85Åa  , 7.29Åb  , 7.56Åc    and angle 102.3   [34]. β-ZnP2 crystal is 

black-greenish [39]. The resistivity of β-ZnP2 is nearly 10 cm  [34, 39]. The unit 

cell of the beta phase of ZnP2 has 08 formula units [39]. Also, the optical energy gap 

of monoclinic ZnP2 is around 1.33 ~1.37 eV [34, 39]. Two phases of CdP2 are 

designated as α-CdP2 and β-CdP2 [40, 41]. α-CdP2 and β-CdP2 have Orthorhombic 

[28, 40] and tetragonal [28] structures, respectively. The band gap of the beta phase of 

CdP2 for polarizations E c  and E c  was studied by Sobolev et al. [37]. Cadmium 

diphosphide finds applications in optoelectronics because of its nonlinear light 

absorption property [42]. CdP2 may be useful in the fabrication of photoresistors 

because of its photosensitivity in the visible region [43]. Tetragonal CdP2 and ZnP2 

crystals are gyrotropic [44].   

1.2.2 II-V2 Arsenides 

CdAs2 and ZnAs2 have tetragonal [45] and monoclinic [46] structures, respectively. 

The space group (SG) of monoclinic ZnAs2 is 5
21 h(P )2 /c C  [46, 47]. CdAs2 and ZnAs2 

have anisotropic optical and electrical properties [48, 49]. The lattice constants of 

CdAs2 crystal structure are 7.96Åa  , 4.67 Åc  [45]. The unit cell of CdAs2 has 04 

formula units and a space group 14 22I [45]. The mass density of CdAs2 is    

35.8 g/cm [45]. At a temperature of 300 K, the indirect energy gap for CdAs2 is 

0.995 eV (polarization E c ) [48]. CdAs2 has specific molar heat capacities 

V 74.46 J/(mol-K)C  and P 74.75 J/(mol-K)C  at a temperature of 300 K [50]. The 

value of birefringence in the infrared region is high for the CdAs2 crystals [51]. 

1.3 Review of Literature   

1.3.1
 
CdP2

 

Berak et al. (1968) studied the cadmium-phosphorus system [52]. As per their     

study [52], CdP2 could exist in 02 phases. The alpha phase of CdP2 is an 

orthorhombic crystal low-temperature form [40, 52]. As per investigation by the      

X-Ray powder method, the alpha phase of CdP2 has lattice parameters 9.90Åa  , 

5.408Åb   & 5.171Åc   [40]. The space group of the alpha phase of CdP2 is  
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Pna21 [40]. Goodyear et al. [40] also investigated the fractional coordinates of non-

equivalent atoms of α-CdP2. They [40] also studied the bond length between atoms of 

α-CdP2. The density of α-CdP2 is nearly 34.18 g/cm [40]. Olofsson et al. [53] provided 

further refined data on fractional coordinates and bond lengths for α-CdP2 using the 

least-squares program. The energy band structure of tetragonal cadmium diphosphide 

was studied experimentally by Sobolev et al. [37]. Tetragonal cadmium diphosphide 

has a Brillouin zone in a rectangular parallelepiped shape [37]. The energy band gaps 

(direct and indirect) of tetragonal CdP2 were studied by Sobolev et al. [37]. The 

variation in the optical activity of CdP2 with frequency was studied by Borshch et al. 

[42]. An investigation of the self-induced rotation of polarized electromagnetic waves 

in tetragonal CdP2 was carried out [54]. The Raman spectrum of β-CdP2 was observed 

by Gorban et al. [55] and Garasevich et al. [44]. For the ZnP2-CdP2 system, phase 

diagram investigation was carried out by Smolyarenko et al. [56]. Babonas et al. [57] 

examined the optical activity of tetragonal CdP2 crystals. Manolikas et al. investigated 

different phases of cadmium diphosphide by the electron diffraction method [58]. The 

thermal expansion coefficient of β-CdP2 as a function of temperature was examined 

by Sheleg et al. [59]. CdP2 crystals have high photosensitivity [43]. Polygalov et al. 

calculated the electron density of the beta phase of CdP2 by means of the pseudo-

potential method [60]. The dielectric properties of tetragonal CdP2 were investigated 

by Aleinikova et al. [61] and Kozlov et al. [62]. Gnatyuk et al. [63] studied the optical 

dispersion of tetragonal CdP2 crystals. Tetragonal CdP2 crystals have utility in the 

fabrication of light (electromagnetic wave) filters and temperature sensors [64]. 

Tetragonal CdP2 crystals are useful in making deflectors of laser beams due to their 

temperature-dependent refractive index and low heat conduction properties [65]. The 

variation of the specific heat of β-CdP2 with temperature was studied by Kopytov      

et al. [66]. For the tetragonal CdP2, temperature-dependent elastic stiffness 

coefficients were examined by Soshnikov et al. [67]. Tetragonal CdP2 has a high 

Verdet constant [68]. Yeshchenko et al. [69] fabricated CdP2 nanoclusters and 

investigated their optical properties. Stamov et al. [70] investigated the electrical 

properties of Schottky barriers made on n-type CdP2. Using LDA (Local Density 

Approximation) and GGA (Generalized Gradient Approximation) functionals, the 

structural and electronic properties of tetragonal cadmium diphosphide were 

examined by Feng et al. [71]. In the case of CdP2 crystal (symmetry 8
4D ), 6540Å is 
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isotropic wavelength [27]. Feng et al. [72] computed the Vickers hardness values for 

both phases of cadmium diphosphide. Feng et al. [72] studied the phonon properties 

of α-CdP2 and β-CdP2. Shportko [73] examined the impact of P and Cd vacancies on 

the characteristics of β-CdP2. Popov et al. [74] studied the variation of the thermal 

conductivity of β-CdP2 with temperature. The variation of the resistivity of CdP2 with 

electron fluence (14-MeV) was studied by Zavada et al. [75]. The beta phase of CdP2 

has a band gap of about 2.02 eV [54, 68, 73]. The alpha phase of cadmium 

diphosphide has a band gap of 2.01 eV [76].  The α-CdP2 was prepared by a chemical 

transport reaction [76]. The alpha phase of cadmium diphosphide shows a strong SHG 

effect and high laser-induced damage thresholds [76]. The α-CdP2 has a large 

birefringence and a broad infrared transparent range [76]. These optical properties 

indicate that the alpha phase of CdP2 is an attractive infrared (IR) nonlinear optical 

material [76]. The alpha phase of cadmium diphosphide has a second-order nonlinear 

optical susceptibility [76].  

1.3.2 ZnP2  

The resistivity of α-ZnP2 is of the order of 810 cm [34]. A study of the 

photoluminescence of α-ZnP2 with ultraviolet light was carried out by Hegyi              

et al. [34]. The resistivity of β-ZnP2 is of the order of 10 cm [34]. Hegyi et al. [34] 

reported fractional coordinates of non-equivalent atoms in the unit cells of α-ZnP2 and 

β-ZnP2 crystals. The crystal structure of tetragonal ZnP2 was investigated 

experimentally by White [36]. The pressure-induced transition in ZnP2 was examined 

by Tanaka [39].  Rubenstein et al. [77] prepared single crystals of α-ZnP2 and β-ZnP2. 

Rubenstein et al. [78] studied the electroluminescence emission spectra of tetragonal 

ZnP2. The thermodynamic properties of ZnP2 were studied by Jordan [79]. The energy 

band structure of tetragonal zinc diphosphide was studied experimentally by Sobolev 

et al. [37]. As stated by Sobolev et al. [37], tetragonal zinc diphosphide has a 

Brillouin zone in a rectangular parallelepiped shape. Sobolev and Syrbu 

experimentally investigated the energy band structure of monoclinic zinc   

diphosphide [38]. The energy band gap Eg of monoclinic ZnP2 was studied through 

photoconductivity and edge reflectivity [38]. Wardzynski et al. illustrated the 

photoluminescence spectra of tetragonal zinc diphosphide [80]. The alpha phase of 

zinc diphosphide may have utility in the field of optoelectronics [28]. Self-induced 
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rotation of polarized electromagnetic waves in tetragonal ZnP2 was analyzed by 

Borshch [54]. The study of the Raman spectrum of α-ZnP2 was carried out by Gorban 

et al. [55]. The variation of thermal expansion coefficients of α-ZnP2 with 

temperature is examined by Sheleg et al. [81]. The nature of the acceptor levels in    

α-ZnP2 was examined by Januskevicius et al. [82]. Sobolev et al. [83] studied the 

reflection spectra of monoclinic ZnP2. Jayaraman et al. [84] studied the pressure-

dependent Raman spectra of the alpha phase of ZnP2. The crystal structure of zinc 

diphosphide with pressure variation was studied by Rubtsov et al. [85]. The elastic 

properties of α-ZnP2 were investigated on the basis of sound speed measurement by 

Soshnikov et al. [67]. The dielectric properties of α-ZnP2 were investigated by 

Aleinikova et al. [61]. Structural investigation of β-ZnP2 was carried out using the     

X-ray diffraction method [86]. Ultrasonic shear and longitudinal speeds were 

determined along the axes of α-ZnP2 crystals [67]. For the tetragonal α-ZnP2, 

temperature-dependent elastic stiffness coefficients were examined by Soshnikov      

et al. [67]. Modulus of rigidity and bulk modulus of α-ZnP2 were determined by 

Soshnikov et al. [67]. The phase composition of ZnP2 crystals in different temperature 

regimes was examined by Shportko et al. [87]. The computed Debye temperature of 

the alpha phase of zinc diphosphide is 292 K [88]. The alpha phase of zinc 

diphosphide has a lower elastic anisotropy than that of the beta phase of zinc 

diphosphide [88]. As per Stamov et al., 5
2 2hZnP C  has an isotropic wavelength 

9060Å [89]. The Raman spectra of tetragonal zinc diphosphide were studied by 

Shportko et al. [90]. The study of phase diagrams for ZnP2 was carried out by 

Trukhan et al. [91]. Stamov et al. [92] studied the luminescence spectra of tetragonal 

ZnP2 doped with Mn, Sb and Cd. The Debye temperature for α-ZnP2 is 280 K [93]. 

Dorogan [94] studied the optical anisotropy of zinc diphosphide. The gyration 

property of 8
2 4ZnP D  is useful for governing photodiode characteristics [95]. 

Živković et al. [96] investigated the structural and elastic properties of the alpha and 

beta phases of zinc diphosphide through the DFT method. Carbon-modified ZnP2-

based composites are useful for better electrochemical performance [97]. ZnP2 is 

useful in making carbon-modified composites due to its better sodium reactivity [97]. 

An investigation of phonon dispersion for tetragonal zinc diphosphide was carried out 

by Litvinchuk et al. [7]. S. H. Oh et al. [98] synthesized zinc diphosphide nanowires 

using bismuth catalysts. 



Chapter 1 

10 
 

1.3.3 ZnAs2 

ZnAs2 is a monoclinic crystal with 08 formula units in the unit cell, as reported by 

Senko et al. [46]. Sobolev et al. [38] studied the optical spectra of the ZnAs2 crystal. 

Lattice parameters of ZnAs2 were experimentally reported by Fleet [47]. ZnAs2 

crystals have anisotropy in optical absorption and electrical resistivity [47]. The 

resistivity   of ZnAs2 along vector a is nearly ten times greater than that along vector 

c at room temperature [28]. FIR absorption spectra in ZnAs2 were investigated by 

Weszka et al. [99]. Matveeva et al. [100] studied the photo-reflectivity properties of 

monoclinic ZnAs2 by the electro-reflectance method. The variation of the Hall 

coefficient with pressure was studied for p-ZnAs2 by Mollaev et al. [101]. 

Temperature-dependent Hall coefficients of n-type and p-type ZnAs2 were studied by 

Morozova et al. [102]. Yakushev et al. [103] studied the Er-implanted ZnAs2 and its 

temperature stability. Zinc diarsenide crystals have high optical and electrical 

anisotropy [64]. ZnAs2 crystals are useful for making sensitive thermoelements [64]. 

Zinc diarsenide crystals may be useful in making light (electromagnetic wave)    

filters [64]. Light (EM wave) filters for nearly IR region using ZnAs2 crystals have 

technical applications [64]. Soshnikov et al. [67] studied the elastic properties of 

ZnAs2 crystals. Ultrasonic shear and longitudinal speeds were determined along the 

axes of zinc diarsenide crystals [67].  

Nikolaev et al. [104] carried out an investigation of the polarization photosensitivity 

of the Schottky barriers on the zinc diarsenide. Marenkin et al. [48] investigated the 

optical and transport properties of ZnAs2 crystals to study their band structure. ZnAs2 

may be used for infrared polarizers, as ZnAs2 crystal has inhomogeneities in the 

refractive index [48, 105]. Zinc diarsenide crystals have a high value of infrared 

transmissivity in a wide range [48]. Zinc diarsenide crystal has a sharp fundamental 

absorption edge [48]. ZnAs2 crystal is a promising material for devising infrared cut-

off filters [48]. An investigation of the phase diagram for ZnAs2 was carried out by 

Trukhan et al. [91]. A phase diagram study of the ZnAs2–MnAs system was carried 

out by Marenkin et al. [106]. Stamov et al. studied the dispersion in ZnAs2 for 

excitonic transitions [107]. The thermodynamic properties of ZnAs2 were examined 

by Kidari et al. [108]. Excitonic polaritons of zinc diarsenide were studied by Syrbu  

et al. [109]. The photovoltaic characteristics of surface-barrier photosensitive 

structures based on ZnAs2 were studied by Stamov et al. [110].  
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1.4 Motivation for Work and Outline of the Thesis 

II-V semiconductor compounds are promising materials for photovoltaic applications, 

as they are made from relatively cost-effective materials. Alpha phase of CdP2 has not 

yet been explored much. As far as we know, until present, there has been no extensive 

analysis of the elastic anisotropy of II-V2 semiconductor compounds. Little attention 

was paid to the Mulliken population analysis of II-V2 materials by researchers. 

Therefore, the study of overlap populations between the atoms of these compounds 

was not well known. There was little experimental information on the elastic 

quantities of II-V2 compounds. As far as we know, there is no other extensive study of 

the equation of states and pressure derivatives of these compounds. There is no 

significant study of the pressure-dependent properties of II-V2 compounds. Our 

comprehensive theoretical analysis with the DFT method will be useful for 

experimenters.   

Our study is aimed at filling this research gap by investigating the structural, 

electronic and elastic properties of the alpha phase of cadmium diphosphide, the alpha 

phase of zinc diphosphide and monoclinic zinc diarsenide. To the best of our 

knowledge, until the present work, there has been almost no study about the variation 

of Young’s modulus, linear compressibility, shear modulus and Poisson’s ratio in 

different planes. Our elastic anisotropy investigation will be useful for determining 

the orientation of crystals for optimum performance of the optoelectronic devices 

made from these compounds. The nonlinear optical properties of these compounds are 

useful for governing the characteristics of optoelectronic devices. Owing to the dearth 

of work, such as elastic anisotropy, etc., our investigation will give an outlook on 

relevant device design for experimental research. 

The thesis comprises six chapters. Chapter 1 deals with II-V Group elements, II-V2 

semiconductors, a review of the literature, etc. Chapter 2 introduces the theoretical 

framework and useful software/tools for the present work. In Chapter 3, structural 

properties, such as structural details, structural diagrams, equation of states, etc., are 

elaborated. Chapter 4 deals with the band structures and the density of states. It also 

illustrates the Mulliken population analysis. Chapter 5 introduces elastic properties. It 

illustrates elastic stiffness constants, Young’s modulus, bulk modulus, shear modulus 

and Poisson’s ratio of compounds. Chapters 3 to 5 are relatively independent. The 

final Chapter 6 of the thesis describes the important conclusions drawn. 
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2.1 Introduction 

Applications of ab-initio calculations are on a large scale in chemistry and materials 

science. Ab-initio computations explore the properties of the many-electron system 

for atoms, molecules, solids, etc. The computation cost (in terms of the computer run 

time for computation) of ab-initio methods is continuously decreasing because of the 

advancement of computer technology. In density functional theory (DFT), the 

properties of a system are predicted with the help of the electron density of the 

system. As per LDA (Local Density Approximation), only the electron density 

influences the exchange-correlation energy. The GGA (Generalized Gradient 

Approximation) also includes the gradient of the charge density term. The estimated 

results obtained with the ab-initio methods may be compared with experimental 

results for further interpretation.  

2.2 Theoretical Framework 

2.2.1 DFT (Density Functional Theory) 

Along with the variation principle, the Thomas-Fermi (TF) equations are considered 

the first endeavor to formulate density functional theory (DFT) [111, 112, 113]. DFT 

is based on the electron density ( , , )x y z  [114]. Density functional theory (DFT) 

describes that the ground-state electronic energy of a molecule or atom can be 

estimated from the electron density ( , , )x y z instead of the wavefunction     

( , , )x y z  [115]. In DFT, electron density distribution ( )r   performs a key role in 

lieu of the many-electron wavefunction [116]. The conventional wave function 

schemes deal quite successfully with a system of a few atoms [116]. However, in 

dealing with very many-atom systems, conventional wave function schemes have 

limitations [116]. The determination of all ground-state electronic energy is uniquely 

carried out by means of electron density in the Hohenberg-Kohn (HK)       

formulation [12, 115, 117]. The Hohenberg-Kohn formulation does not reveal the 

form of functional dependence of ground-state energy on the electron density [12]. 

Kohn and Sham formulated a practical application of DFT by employing Kohn-Sham 

(KS) orbitals [118, 119]. Kohn-Sham orbitals are functions that illustrate the electron 

density in DFT calculations [118, 119]. As per the Kohn-Sham formulation [119, 120] 
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where 

( )n r  represents electron density 

N  represents the number of electrons in the system 

 k r 
represents occupied Kohn-Sham (KS) orbitals 

xcV  represents exchange-correlation potential 

xcE  represents exchange-correlation energy 

( )effV r  represents effective potential 

( )V r  represents external potential 

E  represents the total energy of many-electron system  

k  represents the eigenvalues of occupied states 

 

As per Kohn-Sham formalism, the kinetic energy functional is split mainly into two 

parts [115]. Kohn-Sham DFT has many similarities with HF (Hartree-Fock) theory, 

but in general, results obtained with KS DFT are much better [115]. The Hartree-Fock 

scheme does not take account of the electron correlation [12]. After Kohn-Sham 

formalism, material scientists employed Kohn-Sham DFT using the LSDA (Local-

Spin-Density Approximation) to investigate the properties of solids [121]. In the mid-

1980s, gradient-corrected functionals were introduced; this led to major advancements 

in DFT [121]. Then, analytic gradients were introduced in DFT, which immensely 

helped in the calculation of geometries [121]. The facility for density functional 

21 ( ) ( ) ( )
2 eff k k kV r r r        

  
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calculations was introduced to the Gaussian program in 1993 [121]. The inclusion of 

correlation effects in the calculations is an advantageous feature of DFT [119, 121]. 

The used percentage of Hartree-Fock exchange energy is a major distinguishing 

feature of the hybrid functionals [114]. 

2.2.2 LCAO (Linear Combination of Atomic Orbitals) 

Electrons that reside in the low energy core levels of a free atom obey strong 

localization [122]. These core electrons are strongly localized when atoms form 

crystals [122]. Hence, electrons in the crystals may be illustrated using the linear 

superposition of atomic eigenfunctions [122]. LCAO (Linear Combination of Atomic 

Orbitals) or tight binding approximation is useful for dealing with solutions of 

periodic potential crystals [123].  

Crystalline orbitals may be expressed as a linear combination of Bloch functions in 

the following manner [124]: 

,( ; ) ( ) ( ; )i ir k a k r k 


 
   

 

.( ; ) ( ) ik g

g
r k r A g e     

    
 

( ; )i r k


 denotes a crystalline orbital 

( ; )r k
  denotes the Bloch function 

( )r


 denotes atomic orbitals (local functions) 

g  denotes a lattice vector 

A


 represents the nucleus position in the zero reference cell, on which ( )r


 is 

centered 

The local functions may be represented as linear combinations of Gaussian type 

functions [124]: 

( ) ( ; )
Gn

j j
j

r A g d G r A g       
    

 

jd  denotes a fixed coefficient 

j  denotes an exponent 
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2.2.3 Basis Set  

A set of mathematical functions that constructs the wave function is called the basis 

set [111]. A complete basis set (BS) is made up of an infinite number of         

functions [115]. Such a complete basis set is not feasible in actual computations [12, 

115]. A finite basis set is implemented in computations [12]. Hence, the 

implementation of a finite basis set creates an inherent approximation [115]. This 

incompleteness of the basis set produces an error, known as the basis-set truncation 

error [12]. In the calculation of electronic structure, two types of basis functions are 

commonly used, namely, Gaussian type orbitals and Slater type orbitals [115]. The 

next advancement of the basis sets is the Double Zeta (DZ) basis sets [115]. The next 

improvement in the basis sets is a Triple Zeta (TZ) basis sets [115]. For the basis sets, 

higher angular momentum functions concern the polarization functions [115]. In the 

presence of loosely bound electrons, diffuse functions are required [115]. The plane-

wave basis set has the orthonormality property [125]. Larger basis sets may increase 

accuracy in results, but they may also increase computation time [114].  

2.2.4 Mulliken Population 

Atomic and overlap populations can be determined using the Mulliken population 

analysis scheme [126]. The computation of LCAO coefficients provides the overlap 

population, which measures quantitatively the bonding and antibonding          

strengths [126]. The covalency of the bonds within the crystal and the overlap 

population of the nearest neighbors have a correlation [127]. The positive value of the 

overlap population between two atoms is considered a bonding state [126]. Similarly, 

the negative value of the overlap population between two atoms is considered an 

antibonding state [126]. Overlap population may be considered as an index of   

binding [128, 129]. Overlap population values close to zero suggest that the electronic 

populations of the two atoms do not have considerable interaction [127]. There is a 

correlation between the overlap population of bonds and the bulk modulus of the 

crystals [127]. 
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2.2.5 Equation of State (EOS) 

A PVT (Pressure-Volume-Temperature) relation forms an equation of state [130, 

131]. It has utility in investigating solid state theories [130, 131]. The values of 

various thermodynamic parameters, such as bulk modulus, the first pressure 

derivative of bulk modulus, etc., may be predicted using the equation of state [130, 

131]. Thermal expansions of solids are much less than those of gases [132]. 

Therefore, the isothermal equation of state is usually used for the study of solids 

[132]. 

The equilibrium isothermal bulk modulus ( 0B ) of a crystal may be expressed as 

0
T

PB V
V
     

 

The isothermal first pressure derivative 0B   (dimensionless parameter) may be 

expressed as 

0
0

T

BB
P

     
 

Various equations of states have been derived by many scientists. Some important 

equations of state that very much hold for materials are as follows: 

The third-order Birch-Murnaghan (BM) equation of state is given as [124, 132, 133, 

134, 135]: 

 
7 5 2
3 3 30 0 0 03 31 4 1

2 4
B V V VP B

V V V

    
                                  

 where 0V  is the equilibrium volume at zero pressure. 

The third-order Poirier-Tarantola (PT) logarithmic equation of state is given as [124, 

132, 136]: 

 2
00 0 0 0 2

ln ln
2

BB V V VP
V V V

                  
 

 

Vinet’s equation of state is given by [124, 130, 131, 132]: 
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2.2.6 Elastic Stiffness and Compliance Constants 

Crystal is assumed to be a homogeneous continuous medium for elastic          

properties [17]. Homogeneity of the body means that mechanical properties are the 

same throughout the body [19]. Homogeneous and isotropic terms are not the       

same [19]. Hooke’s law is the basic principle for studying elastic properties [16, 17]. 

As per this law, strains are considered infinitesimally small [16, 17].  

Elastic energy density may be expressed as [17] 

6 6

1 1

1
2 uv u v

u v
U C e e

 

     

Indices are designated as 

1 , 2 , 3 , 4 , 5 , 6xx yy zz yz zx xy       

The generalized Hooke's law forms the basis of the mathematical formulation of 

elasticity [137]. For small deformations, relationships between strain and stress 

components are given below [17]. 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53

x xx yy zz yz zx xy

y xx yy zz yz zx xy

z xx yy zz yz zx xy

z xx yy zz yz zx xy

x xx yy zz

X C e C e C e C e C e C e

Y C e C e C e C e C e C e
Z C e C e C e C e C e C e

Y C e C e C e C e C e C e
Z C e C e C e

     

     

     

     

    54 55 56

61 62 63 64 65 66

yz zx xy

y xx yy zz yz zx xy

C e C e C e

X C e C e C e C e C e C e

 

       
where 11 12 13, , ,...C C C are elastic stiffness constants 

, , , ,x y z z xX Y Z Y Z and yX are stress components 

, , , ,xx yy zz yz zxe e e e e and xye are strain components 

Elastic stiffness constants uvC are material parameters. 

The matrix form of the above relations is given as 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

x xx

y yy

z zz

z yz

x zx

y xy

X eC C C C C C
Y eC C C C C C
Z eC C C C C C
Y eC C C C C C
Z eC C C C C C
X eC C C C C C

    
    
    
    

    
    
    
    
         
 

Here, the relation uv vuC C  holds [16, 17]. 

Therefore, the elastic stiffness matrix C is a 6 6  symmetric matrix [138]. As the 

relation uv vuC C holds, the upper triangular form of matrix C is shown below [138]. 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

C C C C C C
C C C C C

C C C C
C C C

C C
C

 
 
 
 
 
 
 
 
   

This leads to 21 independent elastic stiffness constants instead of 36 elastic stiffness 

constants for fully anisotropic material [17]. The highest number of independent 

elastic stiffness constants is 21, which can be associated with an elastic material [20]. 

Depending on the specific symmetry of the crystal, the number of independent 

stiffness constants is further reduced [17].  

For the elastic compliance constants Sij [17] 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

xx x y z z x y

yy x y z z x y

zz x y z z x y

yz x y z z x y

zx x y z z x y

xy

e S X S Y S Z S Y S Z S X
e S X S Y S Z S Y S Z S X
e S X S Y S Z S Y S Z S X
e S X S Y S Z S Y S Z S X
e S X S Y S Z S Y S Z S X
e S

     

     

     

     

     

 61 62 63 64 65 66x y z z x yX S Y S Z S Y S Z S X      

where 11 12 13, , ,...S S S are elastic compliance constants.  

The matrix form of the above relations is given as 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

xx x

yy y

zz z

yz z

zx x

xy y

e XS S S S S S
e YS S S S S S
e ZS S S S S S
e YS S S S S S
e ZS S S S S S
e XS S S S S S

    
    
    
    

    
    
    
    
       

 

Here, the relation uv vuS S  holds [16]. 

Hence, the elastic compliance matrix S is the 6 6  symmetric matrix [138]. As the 

relation uv vuS S , the upper triangular form of Matrix S is shown below [138] 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

S S S S S S
S S S S S

S S S S
S S S

S S
S

 
 
 
 
 
 
 
 
 

 

Hooke’s law states a linear relation between strain and stress [17]. It holds well 

enough for many physical phenomena.  

2.3 Computation Cost  

Computational materials science employs computers to investigate and analyze the 

properties of materials. Computational tools, such as specific software, are utilized to 

perform computations in materials science. Workstations are computers that are 

technically configured with hardware and software to perform specific intensive 

computations with high performance. Efficient and fast computations are important 

aspects of using workstations regarding their cost-effectiveness. The computation cost 

is related to the execution time for specific application processing. In ab-initio 

computations for periodic systems, integration in the reciprocal space is a major 

consideration [124]. Increasing the number of contracted primitives in the basis set 

significantly lengthens the calculation time for the integrals [124]. Monkhorst and 

Pack described special k points for Brillouin-zone numerical integrations [139]. These 

symmetry-dependent points concern lattice point-group symmetry [139]. This 
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Monkhorst-Pack scheme deals in an efficient way for integrating periodic functions in 

reciprocal space in solid state calculations [139]. 

2.4. Useful Software/Tools 

Useful software/tools for the present work are as follows: 

2.4.1 CRYSTAL Program 
The CRYSTAL code [124, 140] can carry out ab-initio computations of the electronic 

wave function of periodic systems. It is an ab-initio Hartree-Fock LCAO (Linear 

Combination of Atomic Orbitals) program for studying of periodic systems. 

The initial version of the software was CRYSTAL88, which was released in 1988 

[141, 142]. After that, a modified version CRYSTAL92 was released in 1992 [143]. 

Then after program versions CRYSTAL95 [144], CRYSTAL98 [145], CRYSTAL03 

[146], CRYSTAL06 [147], CRYSTAL09 [148, 149] and CRYSTAL14 [150, 151] 

were developed. In 2017, program version CRYSTAL17 [124, 140] was introduced. 

Recently, CRYSTAL23 [152, 153] has been released in 2023. Kohn-Sham or Hartree-

Fock Hamiltonians may be implemented [124]. The CRYSTAL program can run for 

45 point groups, 99 rod groups, 80 layer groups and 230 space groups [124]. 

The CRYSTAL program is used for the study of the properties of crystalline   

materials [124]. In this section, a few important features of the CRYSTAL Program 

are mentioned. The CRYSTAL code provides information about the electronic 

structure of periodic systems [124]. Computations are performed within density 

functional theory (DFT), Hartree-Fock (HF) or, hybrid method [124]. A Fock matrix-

mixing scheme may be utilized for single-point energy calculation [124]. Also, a 

Broyden-Anderson [154, 155] accelerator may be used for convergence [124]. 

 A quasi-Newton algorithm (QNA) [156] is employed for geometry optimizations of 

the system [124, 157, 158, 159, 160]. Atomic coordinates and unit cell parameters are 

optimized under the full geometry optimization process [124]. Geometry optimization 

may be carried out in symmetrized fractional coordinates for atomic locations [124]. 

By default, there is a relaxation of the lattice parameters and nuclear coordinates for 

geometry optimization [124].  

The typical part of computed result of the output file from CRYSTAL Code for 

geometry optimization is shown below:  
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There are different choices available for optimization, such as ATOMONLY, 

FULLOPTG, CELLONLY, ITATOCEL and INTREDUN [124, 161]. There is the 

optimization of only atomic coordinates under ATOMONLY option [124]. Under the 

CELLONLY option, optimization of only cell parameters is carried out [124]. Under 

the INTREDUN option, optimization in redundant internal coordinates may be 

performed [124]. The convergence parameter TOLDEG is used for the RMS (root 

mean square) of the gradient [124]. The convergence parameter TOLDEX is used for 

the RMS (root mean square) of the displacement. The CRYSTAL Code can also 

handle geometry optimization with constraints, such as constant volume optimization, 

linear constraints between atomic coordinates, fixing lattice deformations, fixing 

internal coordinates and partial optimization of atomic positions [124]. Geometry 

optimization under external stress may be performed using the keyword    

EXTPRESS [124]. Transition state search may be carried out with the CRYSTAL 

program [124, 162].  

Electronic properties, such as the band structures, the density of states (DOS), etc., are 

examined by means of the CRYSTAL Program [124]. Along a specific route in the 

BZ, the study of the band structure of a crystal may be carried out [124]. Compton 

profiles (CPs) may be computed from B(r) function [124, 163]. The CRYSTAL Code 

can compute electronic charge density gradients and charge density maps [124]. The 

computation of the EMD (Electron Momentum Density) can be performed from the 

density matrix by means of the CRYSTAL program [124, 164, 165]. Wannier 

functions (WFs) are calculated from Bloch functions (BFs) [124]. Mulliken 

population analysis can be carried out using the keyword PPAN [124]. 

Closed-shell and spin-polarized computations may be carried out with core pseudo-

potentials [124]. Certain chemical and physical features of molecules, surfaces, 

nanotubes and crystals may be investigated with the CRYSTAL program [124]. It is a 

powerful tool in physics and solid-state chemistry [124]. 

       The CRYSTAL program can perform computations of vibrational frequency            

and  phonon  dispersion  [124, 166, 167]. The  CRYSTAL  code  can  compute  the 
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polarization in ferroelectric crystals [124]. 

The CRYSTAL Code can explore the dielectric [168, 169, 170], elastic [171, 172, 

173, 174], photoelastic [175, 176] and piezoelectric [174, 177, 178] properties of the 

materials [124]. Frequency-dependent complex dielectric constants can also be 

calculated using the sub-keyword DYNAMIC [124]. Hence, the refractive index and 

reflectivity may be calculated [124]. The CRYSTAL code can compute the 

polarizability and first hyper-polarizability of the systems as well [124]. 

Elastic tensor, compliance tensor and seismic velocities may be computed by means 

of CRYSTAL Code [124]. A computation of the elastic stiffness constants under a 

given pressure can also be performed [124].  

The typical force calculation and elastic constant tensor parts of the output file 

obtained by means of the CRYSTAL Code are shown below: 

 

 

 



Chapter 2 

24 
 

 

 

 

 



Chapter 2 

25 
 

 

 

 

 

 



Chapter 2 

26 
 

 
 

The piezoelectric and elastic constants of a crystal can be computed using the 

keyword ELAPIEZO [124]. The piezoelectric tensor may be computed using the 

keyword PIEZOCON under the numerical Berry phase scheme [124]. Piezoelectric 

tensors may also be calculated using the keyword PIEZOCP under the CPHF/KS 

method [124]. For the computation of elastic constants under pressure, using the sub-

keyword PREOPTGEOM, pre-optimization is performed [124]. 

The elasto-optic constants (Pockels tensor) can be computed with the keyword 

PHOTOELA by means of CRYSTAL program [124]. 

Electron transport features, such as the Seebeck coefficient and electron thermal 

conductivity, may be investigated by means of the CRYSTAL program [124]. The 

electrical conductivity can also be computed [124]. Using the keyword TRANGE, 

transport properties are computed at different temperatures [124]. 

2.4.2 DL Visualize (DLV) 

It is a graphical user interface (GUI) to visualize the different data sets of materials 

[179]. It is capable of displaying and editing the structures of molecules, periodic 

structures of surfaces and crystals [179]. DLV facilitates the graphical user interface 

(GUI) to the CRYSTAL Program [124, 140, 179]. Visualization is an effective way of 

interpreting data. 

DL Visualize is a powerful tool for modeling [179]. DLV provides many features for 

displaying and analyzing data and specific editing [179]. It provides the flexibility to 

display the type of cell (primitive/conventional cell) and the number of cells in 
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periodic structures [179]. Displayed atom radius may be scaled [179]. The Structure 

Display Panel of DLV is shown in Fig. 2.1. 

 

 

Figure 2.1: DL Visualize Structure Display Panel 

 

Properties (radius, color, charge, type, or spin) and positions of atoms can be   

modified [179]. DLV also provides the facility to delete atoms or introduce a new 

atom [179]. All the atoms of the same type may also be edited simultaneously [179]. 

Atoms may also be placed at particular locations [179]. All the atoms of the same type 

may be highlighted [179]. 

Displaying specific planes through DLV is possible [179]. DLV also provides a 

specific animation facility [179]. A slab model may be constructed by entering the 

Miller indices of particular crystal planes [179]. The lattice may be altered by 

executing a supercell technique on the primitive unit cell of a periodic system [179]. 
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Specific vectors can be displayed within the structure [179]. DLV is capable of 

displaying the bonds between atoms in different ways [179]. An option is also 

available to edit the lattice in certain ways [179]. DLV provides certain facilities for 

transforming a displayed model into a non-periodic model [179]. DLV is a useful tool 

for extracting important information by visualizing data sets [179].  

2.4.3 CRYSPLOT 

CRYSPLOT [180] is an online tool for plotting different features of crystals 

computed with the CRYSTAL Program [124, 140]. The CRYSPLOT is a web-

oriented totally free tool and it is a user-friendly program [180]. Certain chemical and 

physical properties of molecules, surfaces, polymers and crystals may be visualized 

with the CRYSPLOT [180]. Vibrational spectra, phonon dispersion, density of states, 

band structure, electron momentum density, electron charge density (ECD), 

electrostatic potential, topological analysis map, volumetric data, pair correlation 

function, etc. may be analyzed with the CRYSPLOT [180]. 

For plotting the band structure, there is a legend option through which a particular 

band line may be displayed or removed [180]. The CRYSPLOT provides the facility 

to display the Fermi energy line in the band structure [180]. The y-axis unit may be 

displayed in Hartree or electronvolt in the band structure [180]. Shifting of plot values 

on the y-axis is also possible [180].  

It allows plotting the total and projected density of states for all atoms [180]. The 

DOS and band structure can be plotted in a single combined plot [180]. It is capable 

of plotting crystal orbital overlap and Hamiltonian populations [180]. The 

CRYSPLOT is used for the animation of vibrational modes [180]. It is also useful to 

analyze transport properties, such as electron conductivity, Seebeck coefficient, 

electron thermal conductivity, etc. [180]. 

It can also plot the directional Compton profiles and directional autocorrelation 

function of EMD (electron momentum density) [180]. Raman and infrared spectra 

may be analyzed [180]. 

The CRYSPLOT can plot reflectance spectra and complex dielectric function spectra 

[180]. Energy during the geometrical optimization process and corresponding unit cell 

structure may be analyzed by means of the CRYSPLOT program [180]. This tool is 

capable of plotting and analyzing the structure of crystals [180]. The CRYSPLOT can 
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plot simultaneous multiple datasets of certain properties for comparison [180]. The 

CRYSPLOT is an advanced tool for customizing graphs and visualizing computed 

properties [180]. 

2.4.4 ELATE  

ELATE [181, 182] is an online tool that is used for the exploration of elastic tensors. 

Mechanical properties cannot be sufficiently explored fully in the case of the 

unavailability of experimental data on elastic quantities [181]. Ab-initio methods can 

provide the computed values of elastic constants through computational tools. For 

plotting Poisson’s ratio and shear modulus, representation is used, as described by 

Marmier [183]. The maximum and minimum values of elastic moduli may be 

determined through the ELATE tool [181]. The directions in which the maximum and 

minimum values of elastic moduli exist may be determined [181]. These directions 

may be different from crystallographic axes. The EALTE Tool also provides the 

values of the anisotropy parameters (the ratios of maximum to minimum values of 

elastic quantities) [181]. The computational elastic analysis is important for 

identifying the materials of requisite usefulness. It is open-source software with a 

user-friendly interface [181].  

A matrix  6 6 of the elastic stiffness constants is used as input for this      

application [181]. Directional variations of Poisson’s ratio, Young’s modulus, linear 

compressibility and shear modulus are visualized and analyzed through ELATE 

software [181]. Visualizations of 2D and 3D plots of these elastic quantities are 

possible by means of this ELATE tool [181]. Thus, it allows visualization of 

anisotropic elastic properties [181]. The directional-elastic properties may be explored 

with visualization through ELATE software [181]. 

It also provides the averaging Voigt-Reuss-Hill scheme [184, 185, 186] values for 

Young’s modulus, bulk modulus, Poisson’s ratio and shear modulus [181]. The 

specific elastic properties are described by elastic tensorial analysis using the ELATE 

software [181].  

For a typical matrix  6 6 of the elastic stiffness constants, input is processed and 

part of the resultant output through the ELATE software is shown as [181, 182].   

 



Chapter 2 

30 
 

  

 

 

 

 

 

 



Chapter 2 

31 
 

2.5 Present Computational Procedure 

Properties of the alpha phase of CdP2, the alpha phase of ZnP2 and ZnAs2 are 

investigated with the CRYSTAL package (periodic ab-initio HF and DFT code) [124, 

140]. In the present investigation, computations are performed with the DFT 

exchange-correlation (XC) functionals. In the present study, calculations are carried 

out with the GGA functionals (PBE [187, 188], PBEsol [189, 190] and PWGGA [191, 

192, 193, 194, 195, 196]), LDA functionals (LDA PZ [197, 198], LDA VWN [197, 

199]), global hybrid functionals (B3PW [191, 192, 193, 200, 201], B3LYP [199, 200, 

202, 203] and PBE0 [204, 205, 206, 207]) and range-separated hybrid functional 

(HSE06 [187, 188, 208, 209, 210,  211,212, 213,  214, 215]). 

The computations of geometrical optimization, equation of state [173], electronic and 

elastic properties [171, 172, 173] are performed. In this computational work, we have 

used the basis sets for cadmium, zinc, phosphorus and arsenic atoms from the 

CRYSTAL-Basis Set Library of the Torino group [124, 140]. The basis set of 31 

orbitals for the zinc atom [216] and the basis set of 18 orbitals for the phosphorus 

atom [217] have been employed. The basis set of 32 orbitals for the arsenic atom is 

implemented [216]. For the cadmium atom, a basis set of 36 orbitals is implemented. 

The convergence threshold TOLDEE on energy is adopted 10–8 Hartree. For carrying 

out prompt convergence, the BROYDEN accelerator scheme [124, 140, 154, 155] is 

utilized. The Fock/Kohn-Sham matrix mixing factor (namely, keyword FMIXING) 

[124, 140] is employed as a convergence tool for the computations. An 8 8 8   

Monkhorst-Pack k-point mesh [139] is employed for computation. This mesh is 

associated with 125 k-points in the irreducible Brillouin zone (IBZ). For analysis of 

Mulliken populations [126], the keyword PPAN is used in the CRYSTAL program. 

     The size of the strain step for the investigation of elastic computations is 0.01. 

ELATE software [181, 182] is also utilized for the determination of maximum and 

minimum values of various elastic quantities and for plotting various elastic 

quantities. The unit cells of α-CdP2, α-ZnP2 and monoclinic ZnAs2 are drawn with the 

help of DL Visualize (DLV) [179]. The band structures and the DOS are drawn using 

the CRYSPLOT software [180]. 
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3.1 Introduction 

Crystal structure characteristics are important for predicting the properties of 

substances. Theoretical details of crystal structure form the base for experiments. The 

crystal structure has a correlation with mechanical properties. The crystal system may 

be illustrated by the relationship between crystal structure and mechanical response. 

The lattice parameters a, b, c and angle between crystallographic axes are important 

for determining the crystal properties. For the orthorhombic crystal α-CdP2 [40, 41], 

the unit cell is specified by lattice parameters a b c  , 90      . For the 

tetragonal crystals α-ZnP2 [34, 35, 36] and β-CdP2 [35, 45], the unit cells are specified 

by lattice parameters a b c  , 90      . Monoclinic crystals ZnAs2 [46, 99] 

and β-ZnP2 [28, 34] have lattice parameters a b c  , 90 , 90       . In this 

investigation, the structural properties of the alpha phase of CdP2, the alpha phase of 

ZnP2 and monoclinic ZnAs2 are studied. In this thesis, the structural properties of     

II-V2 compounds are studied with classification, such as α-CdP2, α-ZnP2 and ZnAs2, 

as it enables a logical illustration. A number of aspects of structural properties are 

described, including the lattice parameters, atomic pair distances and equation of 

states. 

3.2 Methodology 

The optimized lattice parameters and fractional coordinates of the conventional cells 

have been investigated using initial geometry data of II-V2 compounds by means of 

the CRYSTAL Code [124, 140]. The conventional cells of the compounds are plotted 

using the DLV software [179]. By means of the Birch-Murnaghan [124, 132, 133, 

134, 135], Vinet [124, 130, 131] and Poirier-Tarantola [124, 132, 136] equations of 

states, computations are performed [173]. Also, calculations for the isothermal bulk 

modulus 0B  and its first pressure derivative 0B  are carried out. Atomic pair distances 

for the first 06 neighbors are obtained using the Mulliken population scheme [126] 

with the keyword PPAN [124]. For the study of structural properties of II-V2 

compounds, computations are carried out with different functionals, such as PBE 

[187, 188], PBEsol [189, 190], PWGGA [191, 192, 193, 194, 195, 196], LDA PZ 

[197, 198], LDA VWN [197, 199], B3PW [191, 192, 193, 200, 201], B3LYP [199, 

200, 202, 203], PBE0 [204, 205, 206, 207] and HSE06 [187, 188, 208, 209, 210,  
211,212, 213,  214, 215]. 
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3.3 Results and Discussions 

3.3.1 Structural Properties of CdP2 

3.3.1.1 Structural Details 

Two crystalline phases of cadmium diphosphide, namely, alpha and beta, are reported 

[40, 41, 50]. The alpha phase of cadmium diphosphide has an orthorhombic crystal 

structure at room temperature [41]. A tetragonal structure is reported for the beta 

phase of CdP2 [35, 45]. The reported lattice parameters for β-CdP2 are a = 5.28 Å and 

c = 19.70 Å [35, 45]. The β-CdP2 crystal belongs to 422 class symmetry [42]. The 

space group of β-CdP2 is P43212 and P41212 [28]. 

     In this investigation, the structural properties of the alpha phase of CdP2 are 

studied. The space group of α-CdP2 is Pna21 [40, 41]. The lattice parameters of         

α-CdP2 are a = 9.90 Å, b = 5.408 Å and c = 5.171 Å, as reported by Goodyear               

et al. [40]. The α-CdP2 consists of three nonequivalent atoms, namely, Cd, P(I) and 

P(II) [40]. Four formula units are associated with the unit cell of α-CdP2 [40]. The 

crystal structure of α-CdP2 is shown in Fig. 3.1 under the PBE scheme. From       

Table 3.1, it is obvious that the lattice parameters and volume of the cell obtained 

from LDA functionals are closer to the experimental results. The deviation in unit cell 

volume is nearly –1.3% with LDA functionals. With HSE06 and B3LYP functionals, 

deviations in unit cell volume are almost 5.2% and 10.2%, respectively. With LDA 

VWN functional, deviations in the computed lattice parameters a, b and c with their 

respective experimental values are about 0.02%, 0.13% and –1.5%, respectively. 

Deviations in the computed values of the lattice parameters using the B3LYP are the 

maximum among the functionals mentioned in Table 3.1. Using the B3LYP 

functional, deviations in the computed lattice parameters a, b and c with their 

respective experimental values are about 2.7%, 3.9% and 3.4%, respectively.   
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Figure 3.1: The crystal structure of an orthorhombic conventional unit cell of α-CdP2. 

The lengths a , b  and c are the lattice parameters. 

 

Table 3.1: The lattice parameters (a , b  and c in Å) and volume (V in Å3) of the 

orthorhombic unit cell of α-CdP2 at zero pressure 

 

Scheme a b c     V 

PBEsol3a 10.005 5.492 5.160 283.569 

PBE 10.140 5.577 5.254 297.120 

PWGGA 10.124     5.572     5.253 296.331 

LDA PZ 9.909     5.417     5.091 273.312 

LDA VWN 9.902 5.415 5.095 273.178 

B3LYP 10.164 5.617 5.345 305.147 

B3PW 10.105 5.550 5.230 293.332 

PBE0 10.089 5.535 5.201 290.426 

HSE06 10.096     5.538     5.209 291.282 

Exp3b. 9.90 5.408 5.171 276.9 

Other work3c    286.0 

3aRef. [219]. 
3bRef. [40]. 
3cRef. [72]. 
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To enhance the understanding of crystal structure, atomic pair distances for the 

nearest atoms are described. Table 3.2 illustrates the atomic pair distances between 

different atoms in the unit cell of α-CdP2. Under PBE functional, the atomic pair P-P 

has the nearest distance of about 2.19 Å, whereas the atomic pair Cd-P has the nearest 

distance of about 2.61Å. The volume of the conventional cell is smaller under the 

PBEsol scheme than that under the PBE0 scheme, but the atomic pair distance P5-P10 

is greater under the PBEsol scheme than that under the PBE0 scheme. The same thing 

is true for atomic pair distances P5-P9. Thus, despite the fact that the computed 

volume under the PBEsol is less than that under the PBE0 and HSE06, the nearest two 

P-P pair atoms have a greater atomic distance under the PBEsol functional than under 

the PBE0 and HSE06 functionals. 

Table 3.2: Atomic pair distances (in Å) for the first six nearest atoms in α-CdP2  

Atom 
A 

 

Atom 
B 

Cell  Atomic Pair Distance  

PBEsol PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Cd 7P (0 0 0) 2.569   2.615 2.611 2.530 2.530   2.640 2.609 2.601 2.603 

 9P (0 0 0) 2.591 2.633 2.630 2.559   2.558 2.653 2.628 2.622 2.624 

 5P (0 0 1) 2.594 2.637 2.634 2.561   2.561 2.675 2.638 2.631 2.633 

 10P (0 0 0) 2.618 2.672 2.668 2.581 2.581 2.696 2.657 2.650 2.652 

 6P (0 1 0) 3.768 3.814 3.813 3.738 3.736 3.842 3.807 3.797 3.798 

 10P (0 1 0) 3.777 3.828 3.827 3.747 3.746 3.858 3.822 3.812  3.813 

5P 10P (0 1–1) 2.183 2.195 2.194 2.168 2.166 2.202 2.180 2.173 2.175 

 9P (0 0 0) 2.242 2.273 2.273 2.221 2.221 2.281 2.246 2.235 2.238 

 3Cd (0 1 0) 2.569 2.615 2.611 2.530 2.530 2.640 2.609 2.601 2.603   

 1Cd (0 0–1) 2.594 2.637  2.634  2.561 2.561 2.675 2.638 2.631 2.633 

 6P (0 1 0) 3.608 3.646 3.645 3.572 3.571 3.676 3.619   3.603 3.608 

 2Cd (0 1 0) 3.768 3.814 3.813 3.738 3.736 3.842 3.807 3.797 3.798 

9P 6P (0 1 0) 2.183 2.195 2.194 2.168 2.166 2.202   2.180 2.173 2.175 

 5P (0 0 0) 2.242 2.273 2.273 2.221 2.221   2.281 2.246 2.235 2.238 

 1Cd (0 0 0) 2.591 2.633 2.630 2.559   2.558 2.653 2.628 2.622 2.624 

 2Cd (0 0 0) 2.618 2.672 2.668 2.581 2.581 2.696 2.657   2.650 2.652 

 10P (0 1 0) 3.598 3.641 3.640 3.566 3.565 3.658 3.609 3.595 3.600 

 2Cd (0 1 0) 3.777 3.828 3.827 3.747 3.746 3.858 3.822 3.812 3.813 



Chapter 3 

36 
 

3.3.1.2 Equation of State 

An important consideration of pressure derivative in the equation of states is also 

discussed here. By means of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet 

[124, 130, 131] and Poirier-Tarantola [124, 132, 136] equations of states, 

computations [173] for the isothermal bulk modulus 0B , first pressure derivative 0B  
and volume of the unit cell of α-CdP2 are performed. The values of bulk modulus, 

pressure derivative and volume of α-CdP2 are shown in Table 3.3 under various 

functionals as computed with the EOS schemes at zero pressure. In most of the cases 

in Table 3.3, bulk modulus has a higher value corresponding to a lower unit cell 

volume. However, there is no such relationship between volume and pressure 

derivative in Table 3.3.  

Here, the value of the pressure derivative 0B  of α-CdP2 under the PBEsol is the 

lowest, whereas the pressure derivative under the PWGGA is the highest. The typical 

estimated value of 0B  for the alpha phase of CdP2 lies in the range from 3.93 to 4.17. 

Thus, this range for the alpha phase of CdP2 lies in the typical range of 0B  from 2 to 6 

for solids [220]. 
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Table 3.3: At zero pressure, the computed values of bulk modulus 0B  (GPa), first 

pressure derivative 0B  and unit cell volume V0 (Å3) of the α-CdP2 under different 

functionals 

Scheme EOS method 0B  0B     V0 

PBEsol3d Vinet 57.88 3.94 283.526 

PBEsol3d Poirier-Tarantola 57.92 3.94 283.525 

PBEsol3d Birch-Murnaghan 57.83 3.93 283.528 

PBE Vinet 51.99 4.13 297.066 

PBE Poirier-Tarantola 52.05 4.13 297.065 

PBE  Birch-Murnaghan 51.94 4.12 297.067 

PWGGA Vinet 52.30 4.17 296.269 

PWGGA Poirier-Tarantola 52.36 4.17 296.269 

PWGGA Birch-Murnaghan 52.25 4.16 296.271 

LDA PZ Vinet 64.37 3.99 273.573 

LDA PZ Poirier-Tarantola 64.42 4.00 273.572 

LDA PZ Birch-Murnaghan 64.32 3.98 273.575 

LDA VWN Vinet 64.52 4.02 273.218 

LDA VWN Poirier-Tarantola 64.57 4.03 273.217 

LDA VWN Birch-Murnaghan 64.46 4.02 273.219 

B3LYP Vinet 52.74 4.05 304.658 

B3LYP Poirier-Tarantola 52.79 4.05 304.658 

B3LYP Birch-Murnaghan 52.70 4.04 304.659 

B3PW Vinet 56.31 4.16 293.488 

B3PW Poirier-Tarantola 56.37 4.16 293.487 

B3PW Birch-Murnaghan 56.25 4.15 293.489 

PBE0 Vinet 58.64 4.09 290.604 

PBE0 Poirier-Tarantola 58.70 4.10 290.604 

PBE0 Birch-Murnaghan 58.58 4.09 290.605 

HSE06 Vinet 58.00 4.09 291.208 

HSE06 Poirier-Tarantola 58.06  4.09 291.208 

HSE06 Birch-Murnaghan 57.95 4.08 291.209 
3dRef. [219]. 
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3.3.2 Structural Properties of ZnP2 

3.3.2.1 Structural Details 

Two different crystalline  phases of zinc diphosphide  are represented  as α-ZnP2 and  

β-ZnP2 [28, 34]. The alpha phase and beta phase of ZnP2 have tetragonal and 

monoclinic crystal structures, respectively [28, 34]. Stackelberg et al. [35] and    

White [36] reported a tetragonal crystal structure of the alpha phase of ZnP2. The 

monoclinic structure of ZnP2 has lattice parameters a = 8.85 Å, b = 7.29 Å, c = 7.56 Å 

and angle 102.3    [28, 34]. The space group of monoclinic ZnP2 is P21/c [34]. In 

the monoclinic ZnP2, there is tetrahedral coordination for atoms [34]. The tetragonal 

structure of zinc diphosphide has lattice parameters a = 5.08 Å and c =18.59 Å [36]. 

Each crystalline phase, α-ZnP2 and β-ZnP2, has 24 atoms in the unit cell [28]. 

     In this work, the structural properties of the alpha phase of ZnP2 are investigated. 

The conventional cell of α-ZnP2 has eight formula units [28, 36]. Hence, its unit cell 

has eight Zn and sixteen P atoms [36]. Each Zn atom is bonded to its four nearest P 

atoms [36]. Also, each P atom is bonded to its two nearest P atoms and two nearest Zn 

atoms [36]. The study of the alpha phase of ZnP2 (a tetragonal crystal with space 

group P43212 [28, 36]) is carried out with DFT. The α-ZnP2 consists of three 

nonequivalent atoms, namely, Zn, P(I) and P(II) [36]. The computed fractional 

coordinates of the conventional cell of α-ZnP2 are shown in Table 3.4 under the PBE 

scheme. Optimized lattice parameters of the conventional cell have been investigated 

using initial geometry data of α-ZnP2 and the obtained results are shown in Table 3.5. 

Our obtained results fairly agree with the other reported results in Table 3.5. The 

volume obtained with LDA functional is the lowest in Table 3.5. The conventional 

cell of the alpha phase of ZnP2 is depicted in Fig. 3.2 using DLV software [179]. 

Under the PBE scheme, the crystal structure of the tetragonal unit cell of α-ZnP2 is 

shown in different planes. 
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Figure 3.2: The crystal structure of a tetragonal unit cell of α-ZnP2. The lengths a , b  
and c are the lattice parameters. 
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Table 3.4: The fractional coordinates of the nonequivalent atoms in the conventional 

cell of α-ZnP2  

 
Atom Fractional coordinates 

Present work (PBE scheme)  Exp.3e 

X/a Y/b Z/c  X/a Y/b Z/c 

Zn    0.1408 –0.3476 0.0511    0.154 –0.366 0.0503 

P (I) –0.0191   0.0059 0.1229  –0.010 –0.020 0.1261 

P (II) –0.1943   0.3209 0.0584  –0.185   0.298 0.0597 
 
3eRef. [36]. 

 
Table 3.5: The lattice parameters (a and c in Å) and volume (V in Å3) of the 

tetragonal unit cell of α-ZnP2 at zero pressure 

Scheme      a    c     V 

PBEsol 5.031 18.357 464.720 

PBE 5.108 18.620 485.908 

PWGGA 5.107 18.598 484.962 

LDA PZ 4.984 18.155 450.949 

LDA VWN 4.981 18.147 450.317 

B3LYP 5.170 18.823 503.161 

B3PW 5.099 18.624 484.202 

PBE0 5.083 18.595 480.410 

HSE06 5.087 18.603 481.402 

Exp.3f 5.07 18.65  

Exp.3g  5.08 18.59 479.8 

Exp.3h  5.0586 18.506  

Exp.3i 5.0661 18.532 475.61 

Other Work3j 5.098 18.604  
3fRef. [35]. 
3gRef. [36]. 
3hRef. [61]. 
3iRef. [222]. 
3jRef. [88]. 
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The atomic pair distances of α-ZnP2 are shown in Table 3.6. The nearest P-P pair 

distance (about 2.17 Å) is less than the nearest Zn-P (about 2.3 Å) pair distance for 

LDA scheme. In Table 3.6, atomic pair distances between the same pairs under 

different functional schemes are the lowest for the LDA VWN scheme and the highest 

for the B3LYP scheme. The nearest neighbor distance between the Cd-P atomic pair 

in α-CdP2 is greater than the nearest neighbor distance between the Zn-P atomic pair 

in α-ZnP2. The nearest neighbor distance between the P-P atomic pair in α-CdP2 is not 

very different from the nearest neighbor distance between the P-P atomic pair in       

α-ZnP2.  

 

Table 3.6: Atomic pair distances (in Å) for the first six nearest atoms in α-ZnP2  

Atom 
A 

 

Atom 
B 

Cell Atomic Pair distance  

PBEsol   PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Zn 22P (0 0 0) 2.327 2.369 2.366 2.299 2.298 2.408 2.375 2.370   2.370 

 11P (0 –1 0) 2.345 2.383 2.381 2.320 2.319 2.416 2.388 2.384 2.385 

 9P (0 0 0) 2.349 2.391 2.388 2.322 2.321 2.426 2.396 2.391 2.392 

 17P (0 –1 0) 2.370 2.412 2.410 2.342 2.341 2.456 2.420 2.414 2.415 

 9P (0 –1 0) 3.612 3.656 3.654 3.580 3.578 3.684   3.642 3.631 3.633 

 19P (0 –1 0) 3.623 3.661  3.660 3.594   3.592 3.684 3.644 3.633 3.636 

9P 17P (0 0 0) 2.183 2.198 2.198  2.171 2.169 2.202   2.182   2.176 2.178 

 19P (0 0 0) 2.251 2.275 2.275 2.234 2.233 2.278 2.249 2.238 2.242 

 3Zn (0 0 0) 2.345 2.383 2.381 2.320 2.319 2.416 2.388 2.384 2.385   

 1Zn (0 0 0) 2.349 2.391 2.388 2.322 2.321 2.426 2.396 2.391 2.392 

 11P (0 0 0) 3.532 3.571 3.569 3.504   3.502 3.585 3.547 3.536 3.540 

 1Zn (0 1 0) 3.585 3.656 3.654 3.546  3.545 3.684 3.642 3.631   3.633   

17P 9P (0 0 0) 2.183 2.198  2.198  2.171 2.169 2.202 2.182 2.176   2.178 

 11P (–1 0 0) 2.251 2.275 2.275 2.234 2.233 2.278 2.249 2.238 2.242   

 6Zn (0 0 0) 2.327 2.369 2.366 2.299 2.298 2.408 2.375 2.370 2.370 

 1Zn (0 1 0) 2.370 2.412 2.410 2.342 2.341 2.456 2.420 2.414 2.415 

 19P (0 0 0) 3.597 3.634 3.633 3.573 3.571 3.652 3.607 3.594 3.598 

 3Zn (0 0 0) 3.623 3.661 3.660 3.594 3.592 3.684 3.644 3.633 3.636 
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3.3.2.2 Equation of State 

By means of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124, 130, 131] 

and Poirier-Tarantola [124, 132, 136] equations of states, computations [173] for the 

isothermal bulk modulus 0B  and first pressure derivative 0B  are performed for          

α-ZnP2. In this investigation, with these three EOS schemes, results with the estimated 

values of 0B , 0B  and unit cell volume of α-ZnP2 at zero pressure are shown in      

Table 3.7. All three EOS schemes provide approximately the same estimated values 

for 0B  and 0B  for the given functional scheme. Under GGA functionals, a reasonable 

consistency is found between our respective estimated values of 0B  & 0B  and those of 

Fan et al. [221]. Under the PBE functional, using the Vinet EOS, the plot of relative 

energy E (per unit cell) of α-ZnP2 versus its unit cell volume is shown in Fig. 3.3.  

 

 
 

Figure 3.3: Under the Vinet EOS scheme, the plot of relative energy per unit cell E 

(with respect to minimum energy) of α-ZnP2 versus its unit cell volume (Å3). The 

obtained data points are shown in the volume range of the unit cell from 450 Å3 to 

510 Å3.  

 

The typical estimated range of 0B  for the alpha phase of ZnP2 is 4.34−4.58, which lies 

in the general typical range of 0B  from 2 to 6 for solids [220]. 
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Table 3.7: At zero pressure, the computed values of bulk modulus 0B (GPa), first 

pressure derivative 0B  and unit cell volume V0 (Å3) of the alpha phase of ZnP2 under 

different functionals 

Scheme EOS method                0B  0B     V0 

PBEsol Vinet 75.33 4.48 464.716 
PBEsol Poirier-Tarantola 75.25 4.36 464.731 
PBEsol Birch-Murnaghan 75.37 4.57 464.704 
PBE Vinet 66.30  4.54 482.967 
PBE Poirier-Tarantola 66.42 4.52 482.970 
PBE  Birch-Murnaghan 66.22 4.54 482.966 
PWGGA Vinet 66.63 4.55 484.835 
PWGGA Poirier-Tarantola 66.74 4.56 484.833 
PWGGA Birch-Murnaghan 66.55 4.55 484.835 
LDA PZ Vinet 82.98 4.54 451.306 
LDA PZ Poirier-Tarantola 83.12 4.55 451.303 
LDA PZ Birch-Murnaghan 82.88 4.53 451.309 
LDA VWN Vinet 83.18 4.57 450.614 
LDA VWN Poirier-Tarantola 83.33 4.58 450.611 
LDA VWN Birch-Murnaghan 83.08 4.56 450.617 
B3LYP Vinet 63.97 4.35 502.939 
B3LYP Poirier-Tarantola 64.06 4.35 502.938 
B3LYP Birch-Murnaghan 63.90 4.34 502.942 
B3PW Vinet 70.13 4.41 484.188 
B3PW Poirier-Tarantola 70.24 4.41 484.186 
B3PW Birch-Murnaghan 70.05 4.40 484.190 
PBE0 Vinet 72.68 4.35 480.485 
PBE0 Poirier-Tarantola 72.79 4.35 480.483 
PBE0 Birch-Murnaghan 72.60 4.34 480.487 
HSE06 Vinet 71.90 4.35 481.450 
HSE06 Poirier-Tarantola 72.00 4.36 481.448 
HSE06 Birch-Murnaghan 71.82 4.35 481.452 
Other Work3k  76.83   
Other Work3l  69  483.6 
Other Work3m  63.13 4.445  

Exp.3n  63.6   
3kRef. [96]. 
3lRef. [88]. 
3mRef. [221]. 
3nRef. [67]. 
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3.3.3 Structural Properties of ZnAs2 

3.3.3.1 Structural Details 
In this investigation, the structural properties of ZnAs2 are studied. The crystal 

structure of ZnAs2 is shown in Fig. 3.4. Under the PBE scheme, the crystal structure 

is shown with the ab plane view, ac plane view, bc plane view and 3D view. The 

space group of monoclinic ZnAs2 is P21/c (ܥଶ௛ହ ) [46, 47]. ZnAs2 has 08 formula units 

in the monoclinic unit cell [46]. Monoclinic ZnAs2 has 06 nonequivalent atoms in the 

unit cell [47, 50]. With the initial geometry data of ZnAs2 [46, 47], the optimized 

lattice parameters have been computed. The lattice parameters (a, b, c and angle β) 

and volume of the unit cell under different functional methods are shown in        

Table 3.8. It is evident from Table 3.8 that volume is the least with LDA functional 

and volume is the maximum for the B3LYP functional. Using the PBE functional, 

deviations in the computed lattice parameters a, b and c with their respective 

experimental values are about −0.33%, −0.27% and 0.21%, respectively. It is evident 

from Table 3.8 that deviations in computed angle β with its respective experimental 

value are small. The maximum deviation in angle β is observed for the B3LYP 

scheme, which is about 0.034%. 

 
Table 3.8: The lattice parameters (a, b and c in Å), angle β (in degrees) and volume V 
(in Å3) of the monoclinic unit cell of ZnAs2 at zero pressure 
 

Scheme a b c β V 

PBEsol3o 9.125 7.570 7.909 102.483 533.42 

PBE 9.256 7.670 8.027 102.494 556.325 

PWGGA 9.249 7.665 8.021 102.498 555.204 

LDA PZ 9.035 7.477 7.818 102.425 515.791 

LDA VWN 9.028 7.487 7.822 102.415 516.393 

B3LYP 9.342 7.741 8.088 102.501 571.051 

B3PW 9.244 7.672 8.003 102.487 554.145 

PBE0 9.221 7.649 7.977 102.475 549.314 

HSE06 9.219 7.650 7.976 102.466 549.228 

Exp.3p 9.287  7.691 8.010 102.466  
3oRef. [223]. 
3pRef. [47]. 
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Figure 3.4: The crystal structure of a monoclinic unit cell of ZnAs2. The lengths a, b 

and c are the lattice parameters.  

 



Chapter 3 

46 
 

Table 3.9: Atomic pair distances (in Å) for the first six nearest atoms in ZnAs2  

Atom 
A 

 

Atom 
 B 

Cell Atomic Pair Distance 
PBEsol PBE PWGGA

 
LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Zn 22As (0 0 0) 2.371 2.406 2.403 2.343 2.344 2.431 2.408 2.402 2.401 

 23As (0 0 1) 2.373 2.407 2.405 2.344 2.346 2.432 2.409 2.405 2.403 

 17As (0 –1 0) 2.412   2.449 2.446 2.378 2.383 2.476 2.452 2.447 2.443 

 13As (0 0 0) 2.416 2.455 2.452 2.382 2.386 2.486 2.460 2.455 2.450 

 21As (0 –1 0) 3.717 3.777 3.774 3.671 3.662 3.816 3.785 3.772   3.770 

 21As (0 0 0) 3.860 3.899 3.897 3.814 3.833 3.930   3.892   3.882 3.886 
5Zn 10As (1 0 0) 2.406 2.444 2.442 2.374 2.374 2.471 2.450 2.441 2.440 

 9As (0 0 0) 2.420 2.454 2.453 2.396 2.393 2.487 2.460 2.453 2.458 

 13As (0 0 0) 2.442 2.482 2.479 2.409 2.411   2.511 2.486 2.481   2.477 

 20As (0 0 0) 2.446   2.485 2.483 2.412   2.417 2.515 2.489 2.483 2.480   

 24As (0 0 0) 3.637 3.679 3.680 3.603 3.601 3.709 3.676 3.669 3.667 

 21As (0 0 0) 3.679 3.712 3.712 3.645 3.651 3.737 3.703 3.697 3.697 

9As 6Zn (1 1 0) 2.406 2.444 2.442 2.374 2.374 2.471 2.450 2.441 2.440 

 5Zn (0 0 0) 2.420 2.454 2.453 2.396 2.393 2.487 2.460   2.453 2.458 

 16As (0 0 0) 2.461 2.489  2.488 2.443 2.442   2.491 2.464 2.453 2.457 

 17As (0 0 0) 2.461 2.489  2.488 2.443 2.443 2.491   2.465 2.454 2.456 

 21 As (0 0 0) 3.756 3.804 3.802 3.730 3.727   3.815 3.773   3.755 3.764 

 24As (0 0 0) 3.761   3.812 3.811 3.732 3.731 3.826   3.782 3.764 3.771 

13As 1Zn (0 0 0) 2.416   2.455 2.452 2.382 2.386 2.467   2.440 2.430 2.450 

 21As (0 0 0) 2.435 2.462 2.462 2.409 2.411    2.486 2.460 2.454 2.433 

 5Zn (0 0 0) 2.442 2.482 2.479 2.417 2.417 2.491 2.465 2.455   2.477 

 12As (0 01) 2.461 2.489 2.488 2.443 2.442   2.511 2.486 2.481 2.457 

 17As (0 0 0) 3.677 3.725 3.723 3.646 3.645 3.741 3.700   3.686 3.688 

 8Zn (0 0 1) 3.792 3.830  3.830 3.760 3.761 3.857 3.819 3.811 3.814 

17As 1Zn (0 1 0) 2.412 2.449  2.446 2.378 2.383 2.458 2.433   2.424 2.443 

 21As (0 0 0) 2.427 2.455 2.454 2.412 2.411 2.476   2.452 2.447 2.427 

 8Zn (0 0 1) 2.446 2.485  2.483 2.412 2.417 2.491   2.464 2.453 2.480 

 9As (0 0 0) 2.461 2.489 2.488 2.443 2.443 2.515 2.489 2.483   2.456 

 13As (0 0 0) 3.677 3.725 3.723 3.646 3.645   3.741 3.700 3.686 3.688 

 5Zn (0 0 0) 3.787   3.827  3.827 3.755 3.756 3.857 3.817 3.809 3.810 
21As 2Zn (0 0 0) 2.371 2.406 2.403 2.343 2.344 2.431 2.408 2.402 2.401   

 3Zn (0 0 1) 2.373 2.407 2.405 2.344 2.346    2.432 2.409 2.405 2.403   

 17As (0 0 0) 2.427 2.455 2.454 2.412 2.411   2.458 2.433 2.424 2.427 

 13As (0 0 0) 2.435 2.462 2.462 2.417 2.417 2.467 2.440 2.430 2.433 

 8Zn (0 0 1) 3.637 3.679 3.680 3.603 3.601 3.709 3.676 3.669   3.667 

 5Zn (0 0 0) 3.679 3.712 3.712 3.645 3.651 3.737 3.703 3.697 3.667 
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Atomic pair distances for monoclinic ZnAs2 for the first 06 nearest atoms are shown 

in Table 3.9. The unit cell of ZnAs2 has 06 nonequivalent atoms [47, 50], namely 

Zn(I), Zn(II), P(I), P(II), P(III) and P(IV). In general, the nearest atomic pair Zn-As 

distance is smaller than the nearest atomic pair As-As distance. For example, in   

Table 3.9, the nearest atomic pair Zn-As distance is about 2.34 Å and the nearest 

atomic pair As-As distance is about 2.41 Å in the LDA functional. 

3.3.3.2 Equation of State 

The Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124, 130, 131] and Poirier-

Tarantola [124, 132, 136] equations of states [173] are utilized for calculations of the 

isothermal bulk modulus 0B  and first pressure derivative 0B . In this work, with these 

mentioned EOS schemes, the computed values of 0B , 0B  and volume of the cell of 

ZnAs2 at zero pressure are depicted in Table 3.10. Under the PBE functional, using 

the Vinet EOS, the plot of relative energy E (per unit cell) of ZnAs2 versus its 

monoclinic unit cell volume is shown in Fig. 3.5.  

 

 
 
 
 

 

 

 

 

 

 

 

Figure 3.5: Under the Vinet EOS scheme, the plot of relative energy per unit cell E 

(with respect to minimum energy) of ZnAs2 versus its unit cell volume (Å3). The 

obtained data points are shown in the volume range of the unit cell from 512 Å3 to 

600 Å3. 
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Table 3.10: At zero pressure, the computed values of bulk modulus 0B  (GPa), first 

pressure derivative 0B  and unit cell volume V0 (Å3) of ZnAs2 under different 

functionals 

Scheme EOS method 0B  0B  V0 

PBEsol Vinet 79.88 3.26 531.486 

PBEsol Poirier-Tarantola 79.89 3.26 531.484 
PBEsol Birch-Murnaghan 79.88 3.25 531.490 

PBE Vinet 73.31 4.01 556.253 

PBE Poirier-Tarantola 73.37 4.01 556.252 
PBE  Birch-Murnaghan 73.25 4.00 556.253 

PWGGA Vinet 73.96 3.96 553.897 

PWGGA Poirier-Tarantola 74.02 3.97 553.896 

PWGGA Birch-Murnaghan 73.90 3.96 553.899 
LDA PZ Vinet 86.05 2.73 515.507 

LDA PZ Poirier-Tarantola 86.03 2.74 515.506 

LDA PZ Birch-Murnaghan 86.13 2.72 515.512 
LDA VWN Vinet  83.54 2.62 515.248 

LDA VWN Poirier-Tarantola 83.52 2.62 515.248 

LDA VWN Birch-Murnaghan 83.63 2.61 515.252 
B3LYP Vinet 72.38 4.16 569.734 

B3LYP Poirier-Tarantola 72.46 4.16 569.733 

B3LYP Birch-Murnaghan 72.31 4.16 569.735 

B3PW Vinet 75.77 4.20 554.109 
B3PW Poirier-Tarantola 75.86 4.20 554.108 

B3PW Birch-Murnaghan 75.69 4.19 554.112 

PBE0 Vinet 79.12 3.98 547.737 
PBE0 Poirier-Tarantola 79.26 3.98 547.736 

PBE0 Birch-Murnaghan 79.19 3.98 547.739 

HSE06 Vinet 78.59 3.96 548.669 

HSE06 Poirier-Tarantola 78.65 3.96 548.667 
HSE06 Birch-Murnaghan 78.52 3.95 548.671 

 

     The typical estimated value of the first pressure derivative for ZnAs2 is 2.61–4.20, 

which lies in the typical range of 0B  from 2 to 6 for solids [220]. For the given 
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functional scheme, all three EOS schemes provide nearly the same estimated values 

for 0B , 0B  and unit cell volumes V0. It is evident from Table 3.10 that the computed 

value of 0B  is the minimum under the LDA scheme and the maximum under the 

B3PW scheme. 

3.4 Conclusions 

This chapter explores the structural properties of α-CdP2, α-ZnP2 and ZnAs2 by 

implementing DFT methods. Our investigation illustrates that atomic pair P-P has the 

nearest distance of about 2.17 Å, whereas atomic pair Cd-P has the nearest distance of 

about 2.53 Å in the unit cell of α-CdP2 under LDA scheme. The lattice parameters and 

volume of the α-CdP2 cell computed from LDA functionals are closer to experimental 

results. An important feature, such as the pressure derivative in the equation of state, 

was also elaborated. The values of bulk modulus and first pressure derivative of        

α-CdP2 computed with EOS (Vinet, Poirier-Tarantola and Birch-Murnaghan) are in 

the range 51.94–64.57 GPa and in the range 3.93–4.17, respectively, at zero pressure 

under various functionals. For the alpha phase of CdP2, the first pressure derivative 

0B  lies in the general range of 0B  from 2 to 6 for solids.  

For atomic pair distances of α-ZnP2, the nearest P-P pair distance is about 2.17 Å and 

the nearest Zn-P pair distance is about 2.3 Å under LDA functional. The obtained 

nearest neighbor distance between the P-P atomic pair in α-ZnP2 is not much different 

from the nearest neighbor distance between the P-P atomic pair in α-CdP2. The 

nearest neighbor distance between the Zn-P atomic pair in α-ZnP2 is less than the 

nearest neighbor distance between the Cd-P atomic pair in α-CdP2. The estimated 

range of the first pressure derivative 0B  for α-ZnP2 is about 4.34–4.58. The computed 

range of bulk modulus 0B  for α-ZnP2 is about 64–83 GPa. 

For ZnAs2, deviations in the calculated lattice parameters a, b and c with their 

respective experimental values are about −0.33%, −0.27% and 0.21%, respectively, 

under the PBE scheme. The value of computed angle β of ZnAs2 is about 102.46 at 

zero pressure under various functionals. The unit cell of ZnAs2 has 06 nonequivalent 

atoms, namely Zn(I), Zn(II), P(I), P(II), P(III) and P(IV). The nearest atomic pair    

As-As distance is larger than the nearest atomic pair Zn-As distance in the unit cell of 

ZnAs2.  
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Under the LDA scheme, the nearest atomic pair Zn-As distance is about 2.34 Å and 

the nearest atomic pair As-As distance is about 2.41 Å in the monoclinic ZnAs2 

crystal. The typical calculated value of the first pressure derivative for ZnAs2 is   

2.61–4.20. The estimated value of bulk modulus for ZnAs2 lies in the range              

72.31–86.13 GPa. 

 

 

 

 

 



 
 
 

 

 

 
 

CHAPTER 4 
ELECTRONIC PROPERTIES OF 
CdP2, ZnP2 AND ZnAs2 COMPOUNDS 
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4.1 Introduction 

Investigation of the density of states and electronic band structures provides 

information on the electronic properties of materials. Using special k


 points of high 

symmetry in the reciprocal space, the electronic band structure of the material is 

plotted. The electronic band structure provides an energy band gap for the material. 

The direct energy band gaps as well as the indirect energy band gaps of 

semiconductor compounds may be determined by the electronic band structures. The 

total DOS (density of states) and the PDOS (partial density of states) are useful in 

predicting conduction properties. Understanding the electronic band structure of a 

substance can elucidate its optical properties. The region close to Fermi energy in the 

band structure has importance in the deduction of important conclusions about 

electronic properties. The position of Fermi energy in the plot between the density of 

states and the energy plays an important role in finding out the conduction properties 

of solids [13]. 

     Contributions to the electronic states of different shells and orbitals may be 

illustrated by the partial density of states (PDOS). Mulliken population analysis may 

be utilized to illustrate electronic charge density distribution. Overlap population is 

useful in predicting the various features of the nature of chemical bonds in substances. 

An analysis of the overlap population may indicate the covalent and ionic characters 

of a chemical bond. Mulliken population analysis can also reveal typical atomic 

charges. Investigations on the electronic properties of II–V2 semiconductor 

compounds will be useful in the development of semiconductor devices for 

optoelectronics. 

4.2 Methodology 

Using the CRYSTAL Code [124, 140], electronic properties are investigated. The 

keyword BAND is used for the analysis of electronic band properties [124]. Band 

structures are plotted using CRYSPLOT [180]. The plot of the energy of a band state 

as a function of a wave vector k


 (in the Brillouin zone) forms a band structure [50]. 

In this work, the density of states is plotted using CRYSPLOT [180]. Mulliken 

population [126] is analyzed by means of the keyword PPAN [124]. Overlap 

population and charge transfer are also studied with different functionals. Properties 
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of the density of states are studied using the keyword DOSS [124]. The energy band 

range (first and last bands) may be specified for the computation of the density of 

states. The energy band gaps of compounds are computed with different functionals.  

      In the present work, computations are performed with the functionals PBE [187, 

188], PBEsol [189, 190], PWGGA [191, 192, 193, 194, 195, 196], LDA PZ [197, 

198], LDA VWN [197, 199], B3PW [191, 192, 193, 200, 201], B3LYP [199, 200, 

202, 203], PBE0 [204, 205, 206, 207] and HSE06 [187, 188, 208, 209, 210,  211,212 

213,  214, 215]. In the present investigation, the study of the electronic properties of  

α-CdP2, α-ZnP2 and ZnAs2 is carried out. 

4.3 Results and Discussions 

4.3.1 Electronic Properties of CdP2 

4.3.1.1 Band Structure and DOS 

The beta phase of cadmium diphosphide has an energy band gap of about 2.02 eV 

[54, 68, 73]. For polarizations E cII  and E c , Sobolev et al. studied the energy band 

gap of β-CdP2 [37]. In the present study, the electronic properties of the alpha phase 

of CdP2 are investigated. The band structure calculations can provide details about the 

energy band gap, Fermi energy, band structures, the valence band maxima, the 

conduction band minima, etc. [224]. The band structure of α-CdP2 is shown               

in  Fig. 4.1. The band structure of α-CdP2 is drawn along appropriate paths connecting 

special points of high symmetry [225].  
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Figure 4.1: The band structure of α-CdP2 under the PBE scheme. 

The energy band gap of α-CdP2 is 1.79 eV under the PBE scheme. The energy value 

of 1.79 eV lies in the energy band gap range for semiconductors. The highest point of 

the valence band can be seen on the path Z  in Fig. 4.1. It is also evident           

from Fig. 4.1 that the lowest point of the conduction band exists near the X point. 

Hence, it shows the indirect energy band gap of 1.79 eV for the alpha phase of 

cadmium diphosphide. For electronic band structure, computations are performed 

along high symmetry directions for these special points (namely , , , , , , ,X Z S U Y R  etc.) 

in the Brillouin zone [4]. 

Relative to the Fermi energy level, the density of states is plotted from about −5 eV to 

10 eV, as shown in Fig. 4.2. On the y-axis, arbitrary units are used for the density of 

states, but scaling is the same for all the atoms, which are mentioned in Fig. 4.2. 
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Figure 4.2: The density of states of α-CdP2 under the PBE scheme. 

The total DOS and the density of states of nonequivalent atoms [Cd, P(I) and P(II)] of     

α-CdP2 are shown in Fig. 4.2. Each P(I) and P(II) atom contributes more in 

comparison to the contribution to the density of states by Cd atom. The density of 

states lying near the Fermi energy level has importance in determining the electronic 

properties of materials. The study of the band structure and the density of states for   

α-CdP2 was carried out with the PBEsol functional in other work [219]. 
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4.3.1.2 Mulliken Population Analysis 

Table 4.1 shows the charges of nonequivalent Cd and P atoms in α-CdP2 crystal. The 

charge transfer in the LDA scheme is less than that in other schemes, as mentioned   

in Table 4.1. The charge transfer values for Cd, P(I) and P(II) are 1.055e, 0.536e and  

0.519e, respectively, under the PBE scheme. It is evident from Table 4.1 that the 

maximum charge transfer values for Cd, P(I) and P(II) atoms take place under the 

PBE0 scheme. The energy band gap values for α-CdP2 crystals are shown                  

in Table 4.2. The energy band gap value is the least for the LDA scheme and the 

maximum for the PBE0 scheme, as evident from Table 4.2. The overlap population in 

α-CdP2 crystal for the first six nearest neighbors is shown in Table 4.3. In Table 4.3, 

negative values of the overlap population show antibonding [126]. Positive values of 

the overlap population show bonding [126]. For bonding states, overlap population 

values for most of the pairs are higher for the LDA scheme, as shown in Table 4.3. 

From Table 3.2, it is obvious that pairs 1Cd-7P and 5P-3Cd each have a minimum 

distance, and the overlap population has a maximum value, as seen in Table 4.3. The 

overlap population for pair 1Cd-7P has a value of 0.148 under the PBE method.  

 
Table 4.1: Charges (in terms of e) of nonequivalent Cd and P atoms of α-CdP2 

Scheme Charge  
Cd 

Charge 
 P (I) 

Charge 
 P (II) 

PBEsol4a 46.977 15.522 15.502 
PBE 46.945 15.536 15.519 
PWGGA 46.960 15.528 15.512  
LDA PZ 47.038 15.493 15.469  
LDA VWN 47.038 15.493 15.469 
B3LYP 46.941 15.533 15.526 
B3PW 46.906 15.554 15.541 
PBE0 46.879 15.568 15.554 
HSE06 46.887 15.564 15.549 

                        4aRef. [219]. 
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Table 4.2: Energy band gap (in eV) of α-CdP2    
 

PBEsol4b PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 Other 
Work4c 

1.76 1.79 1.78 1.71 1.71 2.90 2.97 3.25 2.60 1.49 

 4bRef. [219]. 
4cRef. [226, 227]. 

 
 
Table 4.3: Overlap population for the first six nearest neighbors in α-CdP2  
 

Atom 
A 

 

Atom 
B 

Cell  Overlap Population AB  

PBEsol4d PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Cd 7P (0 0 0) 0.154 0.148 0.150 0.164 0.164 0.148 0.146 0.144 0.145 

 9P (0 0 0) 0.139 0.134 0.136 0.145 0.145 0.136 0.132 0.129 0.129 

 5P (0 0 1) 0.141 0.136 0.138 0.148 0.148 0.135 0.132 0.130 0.130 

 10P (0 0 0) 0.135 0.128 0.130 0.144 0.144 0.128 0.127 0.125 0.125 

 6P (0 1 0) –0.009 –0.008 –0.008 –0.009 –0.010 –0.007 –0.008 –0.008 –0.008 

 10P (0 1 0) –0.010 –0.008 –0.008 –0.010 –0.011 –0.008 –0.009 –0.009 –0.009 

5P 10P (0 1 –1) 0.068 0.076 0.078 0.066 0.066 0.102 0.089 0.087 0.085 

 9P (0 0 0) 0.021 0.030 0.032 0.018 0.018 0.062 0.046 0.044 0.042 

 3Cd (0 1 0) 0.154 0.148 0.150 0.164 0.164 0.148 0.146 0.144 0.145 

 1Cd (0 0 –1) 0.141 0.136 0.138 0.148 0.148 0.135 0.132 0.130 0.130 

 6P (0 1 0) –0.066 –0.060 –0.059 –0.069 –0.069 –0.056 –0.066 –0.071 –0.069 

 2Cd (0 1 0) –0.009 –0.008 –0.008 –0.009 –0.010 –0.007 –0.008 –0.008 –0.008 

9P 6P (0 1 0) 0.068 0.076 0.078 0.066 0.066 0.102 0.089 0.087 0.085 

 5P (0 0 0) 0.021 0.030 0.032 0.018 0.018 0.062 0.046 0.044 0.042 

 1Cd (0 0 0) 0.139 0.134 0.136 0.145 0.145 0.136 0.132 0.129 0.129 

 2Cd (0 0 0) 0.135 0.128 0.130 0.144 0.144 0.128 0.127 0.125 0.125 

 10P (0 1 0) –0.069 –0.062 –0.062 –0.072 –0.072 –0.060 –0.070 –0.074 –0.072 

 2Cd (0 1 0) –0.010 –0.008 –0.008 –0.010 –0.011 –0.008 –0.009 –0.009 –0.009 

4dRef. [219]. 
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4.3.2 Electronic Properties of ZnP2 

4.3.2.1 Band Structure and DOS 

The energy band gap of beta modification of ZnP2 (monoclinic) is nearly       

1.33−1.37 eV, as reported by Hegyi et al. [34]. In the present work, the electronic 

band structure and the density of states of alpha modification of ZnP2 are studied. The 

energy band gap (in eV) of the α-ZnP2 crystal under different functionals is shown          

in Table 4.4. It is clear that the energy band gap value is more than 2.3 eV under the 

B3LYP, B3PW, PBE0, and HSE06 schemes. The value of the energy band gap under 

the LDA scheme is 1.36 eV. The band structure of α-ZnP2 under PBE scheme is 

shown in Fig. 4.3. The value of the energy band gap under PBE functional is 1.54 eV. 

The energy band gap value of 1.54 eV corresponds to the IR region. It is evident from 

Fig. 4.3 that Brillouin point M is the highest point of the valence band for the 

forbidden region. Fig. 4.3 shows an indirect energy band gap of 1.54 eV for the alpha 

phase of ZnP2. Huang et al. reported an energy band gap of 1.48 eV for the alpha 

phase of ZnP2 [88]. 

Table 4.4: Energy band gap (in eV) of α-ZnP2   

PBEsol PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 Exp. 
Work4e 

Exp. 
Work4f 

Other 
Work4g 

1.41 1.54 1.55 1.36 1.36 2.84 2.72 2.98 2.33 2.14 1.65 1.48 

4eRef. [77]. 
4fRef. [28, 228]. 
4gRef. [88]. 
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Figure 4.3: The band structure of α-ZnP2 under the PBE scheme. 
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Figure 4.4: The density of states of α-ZnP2 under the PBE scheme. 
 
      The total density of states and contribution of nonequivalent atoms [Zn, P(I) and 

P(II)] of α-ZnP2 under the PBE scheme are shown in Fig. 4.4. Near the Fermi energy, 

each P(I) and P(II) atom contributes more to DOS in comparison with Zn atom.   
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Figure 4.5: The density of states of the nonequivalent zinc atom of α-ZnP2 under the 

PBE scheme. 

 

      Figure 4.5 illustrates the contribution of orbitals (s, p, d and f ) of nonequivalent 

Zn atoms in the density of states. The contribution of f orbitals of Zn atom of α-ZnP2 

is minimal to the density of states. The contribution of s orbitals of Zn atom to the 

density of states is smaller than the individual contributions of p and d orbitals near 

Fermi energy.  
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Figure 4.6: The density of states of the nonequivalent phosphorus atom [P(I)] of      

α-ZnP2 under the PBE scheme. 

 

     The density of states of the nonequivalent P(I) atom of α-ZnP2 under the PBE 

scheme is shown in Fig. 4.6. For the DOS, the contribution of p orbitals of P(I) atom 

of α-ZnP2 is much higher than that of s and d orbitals. The contributions of s and d 

orbitals of P(I) atom of α-ZnP2 are minimal to the density of states near the Fermi 

level.  

      Figure 4.7 shows the density of states of the nonequivalent P(II) atom of α-ZnP2 

under the PBE scheme. The contributions of s and d orbitals of P(II) atom of α-ZnP2 

are minimal to the density of states near the Fermi level. For the DOS, the 
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contribution of p orbitals of P(II) atom of α-ZnP2 is much higher than that of other 

orbitals of P(II) atom.     

 
 

 
Figure 4.7: The density of states of the nonequivalent phosphorus atom [P(II)] of     

α-ZnP2 under the PBE scheme. 

 

4.3.2.2 Mulliken Population Analysis 

Table 4.5 shows the charges of nonequivalent Zn and P atoms in the α-ZnP2 crystal. 

The amount of charge transfer is relatively small under the LDA functional in 

comparison to other functionals, as mentioned in Table 4.5. For the functionals PBE0 

and HSE06, the amount of charge transfer is relatively high in comparison to other 

functionals, as mentioned in Table 4.5. With PBE functional, the charge transfer of 
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nearly 1.07e takes place from Zn atom. Charge transfers of almost 0.52e and 0.54e 

take place from P(I) atom and P(II) atom, respectively. 

 
Table 4.5: Charges (in terms of e) of nonequivalent Zn and P atoms of α-ZnP2  

Scheme Charge  
Zn 

Charge 
 P (I) 

Charge 
 P (II) 

PBEsol 28.957 15.510 15.533 
PBE 28.932 15.524 15.544 
PWGGA 28.945 15.517 15.538  
LDA PZ 29.012 15.482 15.506 
LDA VWN 29.013 15.482 15.506 
B3LYP 28.924 15.530 15.546 
B3PW 28.898 15.542 15.560 
PBE0 28.874 15.554 15.572 
HSE06 28.880 15.551 15.570 

 
 
Table 4.6: Overlap population for the first six nearest neighbors in α-ZnP2  

Atom 
A 

 

Atom 
B 

Cell Overlap Population AB  
PBEsol PBE PWGGA LDA 

PZ 
LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Zn 22P (0 0 0) 0.180 0.171 0.173 0.188 0.188 0.164 0.166 0.164 0.164 
 11P (0 –1 0) 0.165 0.158 0.160 0.173 0.173 0.153 0.153 0.151 0.151 
 9P (0 0 0) 0.159 0.152 0.153 0.168 0.168 0.147 0.147 0.145 0.145 
 17P (0 –1 0) 0.166 0.158 0.160 0.174 0.174 0.150 0.152 0.151 0.151 
 9P (0 –1 0) –0.008 –0.007 –0.007 –0.009 –0.009 –0.007 –0.007 –0.008 –0.007 
 19P (0 –1 0) –0.009 –0.008 –0.008 –0.010 –0.010 –0.007 –0.008 –0.008 –0.008 
9P 17P (0 0 0) 0.028 0.038 0.040 0.028 0.028 0.073 0.060 0.059 0.057 
 19P (0 0 0) –0.031 –0.015 –0.013 –0.034 –0.034 0.030 0.010 0.008 0.005 
 3Zn (0 0 0) 0.165 0.158 0.160 0.173 0.173 0.153 0.153 0.151 0.151 
 1Zn (0 0 0) 0.159 0.152 0.153 0.168 0.168 0.147 0.147 0.145 0.145 
 11P (0 0 0) –0.073 –0.067 –0.066 –0.076 –0.076 –0.065 –0.074 –0.077 –0.076 
 11P (0 –1 0) –0.032  –0.035 –0.035     
 1Zn (0 1 0)  –0.007 –0.007   –0.007 –0.007 –0.008 –0.007 
17P 9P (0 0 0) 0.028 0.038 0.040 0.028 0.028 0.073 0.060 0.059 0.057 
 11P (–1 0 0) –0.031 –0.015 –0.013 –0.034 –0.034 0.030 0.010 0.008 0.005 
 6Zn (0 0 0) 0.180 0.171 0.173 0.188 0.188 0.164 0.166 0.164 0.164 
 1Zn (0 1 0) 0.166 0.158 0.160 0.174 0.174 0.150 0.152 0.151 0.151 
 19P (0 0 0) –0.058 –0.054 –0.053 –0.060 –0.060 –0.052 –0.060 –0.063 –0.062 
 3Zn (0 0 0) –0.009 –0.008 –0.008 –0.010 –0.010 –0.007 –0.008 –0.008 –0.008 
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      It is evident from Table 4.6 that in most of the pairs, the magnitude of overlap 

population is higher under the LDA schemes than other functionals. Under the LDA 

scheme, the maximum value of the overlap population is found between pairs Zn-P, 

which is 0.188. Under the LDA scheme, the maximum value of the overlap 

population between pairs P-P is 0.028. Under the PBE scheme, the maximum values 

of the overlap populations between pairs Zn-P and pairs P-P are 0.171 and 0.038, 

respectively. In Table 4.6, the overlap population for atomic pair 9P-1Zn is not 

mentioned under PBEsol scheme, as 1Zn is not the first six nearest neighbors of 9P in 

α-ZnP2. With different functionals, overlap populations are mentioned only for the 

pairs under the first six nearest neighbors in Table 4.6. 

 

4.3.3 Electronic Properties of ZnAs2 

4.3.3.1 Band Structure and DOS 

The energy band gap of the monoclinic ZnAs2 crystal under different functionals is 

shown in Table 4.7. Under the PBE scheme, the energy band gap of ZnAs2 is        

0.82 eV. The functionals B3LYP and B3PW give band gaps of 1.79 eV and 1.83 eV, 

respectively. Under the PBE0 scheme, the energy band gap of ZnAs2 is 2.10 eV. The 

computed value of the energy band gap is the minimum with the LDA functional, as 

seen in Table 4.7. Fig. 4.8 shows the band structure of ZnAs2 under the PBE scheme. 

For the electronic band structure of ZnAs2, computations are carried out along high 

symmetry directions for the special points (namely A, B, C, D, E, Y and Z) in the 

Brillouin zone [124]. It is clear from Fig. 4.8 that the Brillouin zone point Y is the 

uppermost point in the valence band region. Relative to the Fermi energy level, the 

electronic band structure is plotted from nearly −7 eV to 15 eV, as shown in Fig. 4.8. 

 
Table 4.7: Energy band gap (in eV) of ZnAs2   

PBEsol4h PBE PWGGA LDA 
PZ 

LDA 
VWN 

B3LYP B3PW PBE0 HSE06 Exp.4i 

~0.78 0.82 0.81 0.74 0.75 1.79 1.83 2.10 1.56 ~1 

4hRef. [223]. 
4iRef. [50, 99]. 
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     Figure 4.9 shows the density of states of monoclinic ZnAs2 under the PBE 

scheme. Relative to Fermi energy level, the density of states is plotted from about   

−5 eV to 10 eV as shown in Fig. 4.9. On the y-axis, arbitrary units are used for the 

density of states, but scaling is the same for all the atoms, which are mentioned         

in Fig. 4.9. It illustrates the contributions of nonequivalent atoms [Zn(I), Zn(II), As(I), 

As(II), As(III) and As(IV)] of ZnAs2. In the vicinity of Fermi energy, the contribution 

of each nonequivalent As atom is greater than that of each nonequivalent Zn atom. 

Fig. 4.10 describes the density of states of the nonequivalent Zn(I) atom of ZnAs2 

under the PBE scheme. Near the Fermi energy, the contributions of p and d orbitals of 

Zn(I) atom are greater than those of s and f orbitals in Fig. 4.10. The contribution of 

the f orbitals of Zn(I) atom is negligible. On the y-axis, arbitrary units are used for the 

contribution of orbitals to the density of states, but scaling is the same for all the 

orbitals, which are mentioned in Fig. 4.10. 

      Fig. 4.11 illustrates the density of states of the nonequivalent Zn(II) atom of 

ZnAs2 under the PBE scheme. Regarding the contributions of s, p, d and f orbitals of 

the nonequivalent Zn(II) atom, a nearly similar pattern of the nonequivalent Zn(I) 

atom is observed. The contribution of the f orbitals of Zn(II) atom of ZnAs2 is also 

negligible.  
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Figure 4.8: The band structure of ZnAs2 under the PBE scheme.  
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Figure 4.9: The density of states of ZnAs2 under the PBE scheme. 
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Figure 4.10: The density of states of the nonequivalent zinc atom [Zn(I)] of ZnAs2 

under the PBE scheme. 
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Figure 4.11: The density of states of the nonequivalent zinc atom [Zn(II)] of ZnAs2 

under the PBE scheme. 
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Figure 4.12: The density of states of the nonequivalent arsenic atom [As(I)] of ZnAs2 

under the PBE scheme. 

 
      Fig. 4.12 shows the density of states of the nonequivalent As(I) atom of ZnAs2 

under the PBE scheme. Near the Fermi energy, the contribution of p orbitals of As(I) 

atom is greater than those of s and d orbitals of As(I) atom in Fig. 4.12. 

      Fig. 4.13 illustrates the density of states of the nonequivalent As(II) atom of 

ZnAs2 under the PBE scheme. The density of states of the nonequivalent As(III) and 

As(IV) atoms of ZnAs2 under the PBE scheme are illustrated in Fig. 4.14 and        

Fig. 4.15, respectively. The contribution of p orbitals of As(III) atom is greater than 
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those of s and d orbitals of As(III) in Fig. 4.14 near the Fermi energy. Similarly, near 

the Fermi energy, the contribution of p orbitals of As(IV) atom is greater than that of s 

and d orbitals of As(IV) in Fig. 4.15.  

 
 

 
 
Figure 4.13: The density of states of the nonequivalent arsenic atom [As(II)] of 

ZnAs2 under the PBE scheme. 
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Figure 4.14: The density of states of the nonequivalent arsenic atom [As(III)] of 

ZnAs2 under the PBE scheme. 
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Figure 4.15: The density of states of the nonequivalent arsenic atom [As(IV)] of  

ZnAs2 under the PBE scheme. 

 
4.3.3.2 Mulliken Population Analysis 
 
Table 4.8 shows charges of nonequivalent Zn and As atoms in the ZnAs2 crystal. It is 

evident from Table 4.8 that charge transfer in Zn(I) atom is a little more than in 

Zn(II) atom. Under the LDA scheme, the charge transfer in Zn(I) atom is about 0.9e. 

The obtained charge transfer value is higher under the PBE0 scheme for ZnAs2. It is 

evident from Table 4.8 that charge transfer in As(IV) atoms is little more than in 

other nonequivalent As atoms. Charge transfer values for As(I), As(II) and As(III) are 
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nearly 0.46e, whereas charge transfer value for As(IV) is nearly 0.51e under the PBE 

scheme. 

 
Table 4.8: Charges (in terms of e) of nonequivalent Zn and As atoms of ZnAs2  
 

Scheme Charge  
Zn(I) 

Charge 
Zn(II) 

Charge 
As (I) 

Charge 
As (II) 

Charge 
As (III) 

Charge 
As (IV) 

PBEsol 29.050 29.072 33.461 33.453 33.459 33.504 

PBE 29.042 29.065 33.467 33.457 33.461 33.507   

PWGGA 29.054 29.077 33.461 33.452 33.456 33.501 

LDA PZ 29.091 29.112 33.438 33.434 33.440 33.486 

LDA VWN 29.092 29.113 33.438 33.434 33.439 33.486 

B3LYP 29.041 29.065 33.463 33.459 33.463 33.509   

B3PW 29.011 29.033 33.480 33.474 33.479 33.523 

PBE0 28.986 29.009 33.492 33.485 33.491 33.537 

HSE06 28.991 29.014 33.489 33.483 33.489 33.533 

 
      Table 4.9 describes the overlap population for the first six nearest neighbors in the 

ZnAs2 crystal. Under the PBE scheme, the maximum value of overlap population for 

Zn-As pair in ZnAs2 is 0.196. The maximum value of overlap population for As-As 

pair in ZnAs2 is 0.276 under the PBE functional, as shown in Table 4.9. Negative 

values of overlap population between pairs Zn-As and As-As indicate antibonding 

states. 
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Table 4.9: Overlap population for the first six nearest neighbors in ZnAs2  
 

Atom 
A 

 

Atom 
B 

Cell Overlap Population AB  
PBEsol PBE PWGGA LDA 

PZ 
LDA 
VWN 

B3LYP B3PW PBE0 HSE06 

1Zn  22As (0 0 0) 0.202 0.196 0.197 0.208 0.208 0.186 0.187 0.186 0.186 
 23As (0 0 1) 0.200 0.195 0.195 0.207 0.206 0.184 0.186 0.184 0.185 
 17As (0 –1 0) 0.186 0.180 0.180 0.193 0.192 0.170 0.173 0.172 0.173 
 13As (0 0 0) 0.184 0.177 0.178 0.191 0.190 0.167 0.170 0.169 0.170 
 21As (0 –1 0) 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 
 21As (0 0 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5Zn 10As (1 0 0) 0.195 0.187 0.188 0.202 0.202 0.177 0.180 0.180 0.180 
 9As (0 0 0) 0.200 0.194 0.194 0.205 0.206 0.183 0.186 0.186 0.185 
 13As (0 0 0) 0.182 0.175   0.176 0.188 0.188 0.167  0.169 0.167 0.168 
 20As (0 0 0) 0.178 0.172 0.173 0.185 0.184 0.163 0.166 0.164 0.166 
 24As (0 0 0) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 21As (0 0 0) 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 
9As 6Zn (1 1 0) 0.195 0.187 0.188 0.202 0.202 0.177 0.180 0.180 0.180 
 5Zn (0 0 0) 0.200  0.194 0.194 0.205 0.206 0.183 0.186 0.186 0.185 
 16As (0 0 0) 0.276 0.275 0.273 0.272 0.272 0.282 0.289 0.296 0.295 
 17As (0 0 0) 0.275 0.274 0.272 0.271 0.271 0.281 0.289 0.295 0.295 
 21As (0 0 0) 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001 
 24As (0 0 0) 0.002  0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001 
13As 1Zn (0 0 0) 0.184 0.177 0.178 0.191 0.190 0.167 0.170 0.169    0.170 
 21As (0 0 0) 0.274 0.274 0.272 0.269 0.269 0.279 0.287 0.293 0.292 
 5Zn (0 0 0) 0.182 0.175 0.176 0.188 0.188 0.167 0.169 0.167 0.168 
 12As (0 0 1) 0.276 0.275 0.273 0.272 0.272 0.282 0.289 0.296 0.295 
 17As (0 0 0) –0.005 –0.003 –0.003 –0.006 –0.006 –0.004 –0.005 –0.006 –0.005 
 8Zn (0 0 1) –0.001 0.000 0.000 –0.001 –0.001 0.000 –0.001 –0.001 –0.001 
17As 1Zn (0 1 0) 0.186 0.180 0.180 0.193 0.192 0.170 0.173 0.172 0.173 
 21As (0 0 0)   0.276 0.276 0.274 0.271 0.271 0.282 0.289 0.295 0.295 
 8Zn (0 0 1) 0.178 0.172 0.173 0.185 0.184 0.163 0.166 0.164 0.166 
 9As (0 0 0) 0.275 0.274 0.272 0.271 0.271 0.281 0.289 0.295 0.295 
 13As (0 0 0) –0.005 –0.003 –0.003 –0.006 –0.006 –0.004 –0.005 –0.006 –0.005 
 5 Zn (0 0 0) 0.000 0.000 0.000 –0.001 –0.001 0.000 –0.001 –0.001 –0.001 
21As 2Zn (0 0 0) 0.202 0.196 0.197 0.208 0.208 0.186 0.187 0.186 0.186 
 3Zn (0 0 1) 0.200 0.195 0.195 0.207 0.206 0.184 0.186 0.184 0.185 
 17As (0 0 0) 0.276 0.276 0.274 0.271 0.271 0.282 0.289 0.295 0.295 
 13As (0 0 0) 0.274 0.274 0.272 0.269 0.269 0.279 0.287 0.293 0.292 
 8Zn (0 0 1) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 5Zn (0 0 0) 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 

 
4.4 Conclusions 

The value of the energy band gap of the alpha phase of CdP2 is 1.79 eV under the PBE 

functional. The contribution to the density of states of each nonequivalent P(I) and 

P(II) atom is greater in comparison to Cd atom for the alpha phase of CdP2. Typical 
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values of charge transfer for Cd, P(I) and P(II) are 1.055e, 0.536e and 0.519e, 

respectively, under the PBE scheme for α-CdP2. The value of the energy band gap 

under the PBE scheme is 1.54 eV for α-ZnP2. The value of the energy band gap of 

1.54 eV corresponds to the IR region of the electromagnetic wave. In the vicinity of 

Fermi energy, each P(I) and P(II) atom contributes more to DOS in comparison with 

Zn atom in the α-ZnP2. The contribution of p orbitals of P(I) atom of the alpha phase 

of ZnP2 to the density of states is much higher than that of s and d orbitals of P(I) 

atom near the Fermi level. For the density of states, the contribution of the f orbitals of 

Zn atom of α-ZnP2 is negligible. Near the Fermi energy, for the DOS, the contribution 

of s orbitals of Zn atom is smaller than the contributions of p and d orbitals of Zn 

atom in the α-ZnP2. The contribution of the p orbitals of the P(II) atom of α-ZnP2 is 

much greater than that of s and d orbitals of P(II) atom in the vicinity of the Fermi 

level. For α-ZnP2, the charge transfer of approximately 1.07e takes place from Zn 

atom under the PBE scheme. From P(I) atom and P(II) atom of α-ZnP2, charge 

transfers of approximately 0.52e and 0.54e, respectively, take place under the PBE 

scheme. The maximum value of the overlap population between the Zn-P pair for     

α-ZnP2 is 0.188 under the LDA functional.  

      The energy band gap of monoclinic ZnAs2 is 0.82 eV under the PBE functional. 

For ZnAs2, the contribution of each nonequivalent arsenic atom to DOS is greater 

than that of each nonequivalent zinc atom near Fermi energy. The contributions of p 

and d orbitals of Zn(I) atom are greater than that of s and f orbitals of Zn(I) atom in 

ZnAs2. The contribution of p orbitals of As(I) atom is greater than that of s and d 

orbitals of As(I) atom in ZnAs2 near the Fermi energy under the PBE functional. All 

As atoms of ZnAs2 also follow nearly the same pattern for DOS in the vicinity of the 

Fermi level. For ZnAs2, the charge transfer in Zn(I) atom is a little more than in Zn(II) 

atom. The charge transfer in Zn(I) atom in ZnAs2 is about 0.9e under the LDA 

scheme. The charge transfer values for the nonequivalent As(I), As(II) and As(III) 

atoms are nearly 0.46e, whereas the charge transfer value for the nonequivalent 

As(IV) atom is nearly 0.51e under the PBE functional for ZnAs2. Under the PBE 

functional, the maximum value of the overlap population for As-As pair in ZnAs2 is 

0.275, whereas the maximum value of the overlap population for Zn-As pair in ZnAs2 

is 0.196. 

 
 



 

 

 

 

 

CHAPTER 5 

ELASTIC PROPERTIES OF CdP2, 

ZnP2 AND ZnAs2 COMPOUNDS 
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5.1 Introduction 

The elastic stiffness coefficients illustrate the response of crystals to stress.                

A completely asymmetric crystal has 21 independent stiffness constants Cij
 [16]. 

Elastic stiffness constants are useful for estimating the mechanical strength of the 

crystals. Density functional theory has the capability to predict the elastic behavior of 

crystals. The estimation of the directional elastic properties of crystals under different 

tensile stresses may play an important role in the device application. A correlation 

between volume change and applied uniform pressure may be made by means of the 

bulk modulus B. Reuss bulk modulus BR and Voigt bulk modulus BV may be 

represented as [184, 185, 186]  

  1
R 11 22 33 12 13 232 2 2B S S S S S S                                                                 (5.1)  

where Sij represents elastic compliance constants.  

 V 11 22 33 12 13 23
1 2 2 2
9

B C C C C C C                                         (5.2)       

Also, Reuss shear modulus GR and Voigt shear modulus GV may be expressed as 

[184, 185, 186]  

      1
R 11 22 33 44 55 66 12 13 2315 4 3 4G S S S S S S S S S 
                             (5.3)       

   V 11 22 33 12 13 23 44 55 66
1 1

15 5
G C C C C C C C C C                                    (5.4)     

Macroscopic polycrystalline shear modulus GH and bulk modulus BH may be 

represented by Voigt-Reuss-Hill theory in the following manner [184, 185, 186]  

 H R V
1
2

G G G                                                                        (5.5)             

 H R V
1
2

B B B 
                                                                      

(5.6)                       

Also, polycrystalline Poisson’s ratio νH and Young’s modulus EH may be estimated as 

[184, 185, 186]  
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 
H H

H
H H

3 2
2 3

B G
B G

 


                
                                                (5.7)

  

H H
H

H H

9
3

B GE
B G


                                                                                     

(5.8)
            

           

The mechanical elastic behavior of the material is correlated with various elastic 

quantities, such as bulk modulus, Young’s modulus, Poisson’s ratio and shear 

modulus. For design calculations for devices, directional shear modulus, Young’s 

modulus and Poisson’s ratio are the key parameters. The proper anisotropic 

description of elasticity for materials results in noteworthy advantages for the 

prediction of preferred orientations of crystals for their technological usages. 

Moreover, understanding the anisotropic behavior of materials assists in improving 

the durability of the devices, which helps in obtaining the desired electrical and 

physical properties. The first principle methods in computational materials science 

play a significant role in predicting the elastic anisotropy of solid materials. It is 

worthwhile to investigate the anisotropic properties of the materials for 

microelectromechanical engineering. 

5.2 Methodology 

Elastic properties of the alpha phase of CdP2, the alpha phase of ZnP2 and monoclinic 

ZnAs2 are investigated with the CRYSTAL package (periodic ab initio HF and 

DFT code) [124, 140]. In the present investigation, computations are performed with 

the functionals PBE [187, 188], PBEsol [189, 190], PWGGA [191, 192, 193, 194, 

195, 196], LDA PZ [197, 198], LDA VWN [197, 199], B3PW [191, 192, 193, 200, 

201], B3LYP [199, 200, 202, 203], PBE0 [204, 205, 206, 207] and HSE06 [187, 188, 

208, 209, 210,  211,212, 213,  214, 215]. 

      The computations of EOS [173] and elastic properties [171, 172, 173] are 

performed with the various functionals. Also, the BROYDEN accelerator scheme 

[124, 140, 154, 155] is implemented. The keyword ELASTCON is employed to 

analyze the elastic properties. The strain step for this work of elastic calculations is 

0.01. The convergence threshold TOLDEE on energy is implemented at 10–8 Hartree. 

The ELATE program [181, 182] is also utilized for the determination of the maximum 

and minimum values of various elastic quantities. The dependence of bulk modulus 
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on pressure is also obtained using the keyword EOS [173]. To change the default 

values of truncation tolerances, the keyword TOLINTEG is used in the CRYSTAL 

CODE [124]. The study of the directional dependence of linear compressibility β, 

Poisson’s ratio ν, shear modulus G and Young’s modulus E is carried out by plotting 

polar graphs using the ELATE program [181, 182]. These graphs are plotted under 

the PBE scheme in this work. 

5.3 Results and Discussions 

5.3.1 Elastic Properties of CdP2 

5.3.1.1 Elastic Constants  

Feng et al. [72] computed elastic constants (in GPa) for the beta phase of CdP2, which 

are 11 92.6,C  22 92.6,C  33 102.2,C  44 36.2,C  55 36.2,C  66 41.1,C  12 33.2,C  13 32.3,C 

and 23 32.3.C   Soshnikov et al. [229] reported the elastic compliance constants (in 

11 210 m /N ) of β-CdP2, which are 11 2.327,S  33 2.288,S  44 3.81,S  66 3.295,S 

12 0.504S   and 13 1.096.S   For the beta phase of CdP2, the values of the directional 

Young modulus (in GPa) are 100 42.97E   and 101 43.71E   [229]. The bulk modulus is 

64.5 GPa and the shear modulus is 17.97 GPa for β-CdP2 [229]. Poisson’s ratios ν12 
and ν13 are 0.217 and 0.479, respectively, for β-CdP2 [229]. 

      The orthorhombic crystal has 09 independent elastic constants C11, C12, C13, 22,C  

C23, 33,C  C44, C55 and C66 [16]. The necessary and sufficient elastic stability conditions 

for the orthorhombic crystal, as stated by Mouhat et al. [230], are expressed by the 

following three conditions: 

11 44 55 660, 0, 0, 0C C C C                                                                              (5.9) 

2 2 2
12 13 23 11 22 33 12 33 13 22 23 112 0C C C C C C C C C C C C                                             (5.10) 

2
12 11 22C C C                                                                                                          (5.11) 

      The computed elastic constants C11, C12, 13,C  C22, C23, 33,C C44, C55 and C66 under 

various schemes are shown in Table 5.1. In the present study, the obtained elastic 
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stiffness constants of α-CdP2 (shown in Table 5.1) satisfy the mentioned elastic 

stability conditions. Hence, it asserts the mechanical stability of the α-CdP2 crystal.  

The computed value of the elastic constant C11 is the greatest and C55 is the least 

among the coefficients C11, C12, 13,C  C22, C23, 33,C  C44, C55  and C66. The values of C13 

and C23 are nearly equal. It is evident from Table 5.1 that the LDA functional gives 

relatively higher values for C11, C12, 13,C  C22, C23 and C33. In the present               

work, Table 5.1 shows that 11 22 33 12C C C C    and 44 66 55C C C  . 

Table 5.1:  Elastic constants Cij (in GPa) of α-CdP2 at zero pressure  

5aRef. [219]. 
5bRef. [72]. 

Elastic compliance constants S11, S12, 13,S  S22, S23, 33,S  S44, S55 and S66 of α-CdP2 at 

zero pressure are shown in Table 5.2. The values of elastic coefficients S12, S13 and 

S23 are negative. It is obvious from Table 5.2 that the elastic compliance constants Sij 
of α-CdP2 at zero pressure follow the relation 55 66 44 33 22 11S S S S S S     . Elastic 

compliance constant S23 has the most negative value among elastic compliance 

constants S12, S13 and S23. 

 

 

 

 

Scheme C11   C12 C13 C22 C23 C33 C44 C55 C66 

PBEsol5a 105.16 50.35   43.41 86.52 41.86 74.23 33.42 24.33 27.48 

PBE 95.41 43.00 36.37 81.15 36.27 69.15 32.74 23.92 27.21 

PWGGA 95.63 42.81 36.51 82.12 36.28 69.58 31.98 23.13 26.98 

LDA PZ 116.70 57.75 49.35 92.80 46.98 81.87 34.70 25.44 28.98 

LDA VWN 116.75 57.43 49.31   92.86 46.87 82.11 34.79 25.60 28.99 

B3LYP 96.58 40.13 35.08 86.08 35.63 76.68 36.26 26.26 29.04 

B3PW 103.81 45.01 38.91 88.59 38.23 76.48 35.51 25.90 29.86 

PBE0 107.59 47.61 41.43 90.36 40.35 78.18 35.45 26.04 30.19 

HSE06 106.40 47.24 40.97 89.29 39.89 77.22 35.01 25.65 29.66 

Other Work5b 101.3 31.1 37.7 91.4 32.5 87.3 37.4 28.2 19.0 
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Table 5.2: Elastic compliance constants Sij [in 1(TPa) ] of α-CdP2 at zero pressure 

5cUsing Ref. [219]. 

 

Table 5.3: Young’s modulus E (in GPa), bulk modulus B (in GPa) and shear 

modulus G (in GPa) of α-CdP2 at zero pressure 

Scheme BV BR BH  GV GR  GH  EV ER  EH  

PBEsol5d 59.68 57.81 58.75 25.73 24.74 25.23 67.50 64.94 66.22

PBE 53.00 51.65 52.32 25.44 24.56 25.00 65.80 63.61 64.71

PWGGA 53.17 51.85 52.51 25.20 24.43 24.81 65.29 63.33 64.31

LDA PZ 66.62 64.30 65.46 26.98 25.93 26.45 71.30 68.57 69.93

LDA VWN 66.55 64.28 65.42 27.08 26.05 26.57 71.54 68.85 70.20

B3LYP 53.45 52.78 53.11 28.21 27.49 27.85 71.97 70.28 71.12

B3PW 57.02 55.74 56.38 28.04 27.22 27.63 72.27 70.23 71.25

PBE0 59.43 57.97 58.70 28.12 27.27 27.69 72.86 70.71 71.79

HSE06 58.79 57.32 58.06 27.72 26.88 27.30 71.86 69.73 70.80

5dUsing Ref. [219]. 

 

      Various elastic quantities Young’s modulus E, bulk modulus B and shear   

modulus G of α-CdP2 are computed by means of the ELATE program [181, 182] 

using computed elastic constants Cij. These elastic quantities are shown in Table 5.3. 

Scheme S11 S12 S13 S22 S23 S33 S44 S55 S66 

PBEsol5c 14.46 –5.96 –5.11 18.34 –6.86 20.33 29.92 41.10 36.38 

PBE 14.91 –5.74 –4.83 18.31 –6.58 20.46 30.54 41.82 36.76 

PWGGA 14.81 –5.57 –4.87 17.92 –6.42 20.27 31.27 43.23 37.06 

LDA PZ 13.55   –6.06 –4.69 17.90 –6.62 18.84 28.82 39.31   34.51 

LDA VWN 13.48   –5.97 –4.69 17.77 –6.56 18.74 28.74 39.07 34.50 

B3LYP 13.82 –4.74 –4.12 16.01 –5.27 17.38 27.58 38.09 34.43 

B3PW 13.40 –4.93 –4.35 16.21 –5.59 18.09 28.16 38.61 33.49 

PBE0 13.20 –4.98 –4.43 16.26 –5.75 18.11 28.21 38.40 33.13 

HSE06   13.38  –5.08 –4.47   16.49    –5.83    18.33    28.57    38.99 33.71 
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It is observed that H H HE B G  . It is evident from Table 5.3 that the LDA functional 

gives relatively higher values for BH. The values of EH and GH obtained with the 

schemes B3LYP, B3PW, PBE0, HSE06 are relatively higher in comparison with the 

respective values of EH and GH obtained with the schemes PBEsol, PBE, PWGGA, 

LDA PZ and LDA VWN. 

      Poisson’s ratios (νV, νR and νH) of α-CdP2 at zero pressure are computed by 

means of the ELATE program [181, 182] using obtained elastic constants. These 

values of Poisson’s ratio under different schemes are shown in Table 5.4. It is evident 

from Table 5.4 that the LDA functional gives relatively higher values for Poisson’s 

ratio ν. Table 5.4 shows that the obtained values of Poisson’s ratios are around 0.3. 

Thus, computed values of Poisson’s ratios lie in the theoretically predicted            

range [137] for materials. 

 

Table 5.4: Poisson’s ratio ν (unitless) of α-CdP2 at zero pressure 

Scheme νV νR νH  

PBEsol5e 0.312 0.313 0.312 

PBE 0.293 0.295 0.294 

PWGGA 0.295 0.296 0.296 

LDA PZ 0.322 0.322 0.322 

LDA VWN 0.321 0.321 0.321 

B3LYP 0.276 0.278 0.277 

B3PW 0.289 0.290 0.289 

PBE0 0.296 0.297 0.296 

HSE06 0.296 0.297 0.297 
5eUsing Ref. [219]. 

    The brittleness and malleability properties of polycrystalline substances may be 

correlated with the ratio of bulk modulus B to shear modulus G [231]. The malleable 

nature of a polycrystalline substance is likely to be predicted for a ratio B/G greater 

than tentatively 1.75 [231]. Table 5.3 shows that the value of BH/GH is about 2.1–2.2. 

Hence, it predicts the malleable nature of the alpha phase of CdP2. 

      Using the keyword EOS, variation of bulk modulus with pressure is obtained with 

the PBE functional under the Vinet [124, 130, 131] scheme. The variation of bulk 
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modulus with pressure is plotted in Fig. 5.1. The variation of bulk modulus with 

pressure is nearly linear in the given range of pressure, as depicted in Fig. 5.1. To our 

best knowledge, there is no other theoretically or experimentally reported bulk 

modulus data for α-CdP2 at higher pressures for comparison with our investigation. 

 

 

Figure 5.1: Computed bulk modulus B of α-CdP2 as a function of applied pressure P. 

 

5.3.1.2 Elastic Anisotropy 

In terms of elastic compliance constants Sij, Young’s modulus E along the unit vector 

li for the orthorhombic crystal may be represented as [16] 

14 2 2 2 2 2 2 4 4 2 2 2 2 2 2
1 11 1 2 12 2 3 23 1 3 13 2 22 3 33 1 3 55 2 3 44 1 2 662 2 2E l S l l S l l S l l S l S l S l l S l l S l l S


                                                

                                                                                                                                (5.12) 

where the direction cosines are denoted by l1, l2 and l3. 

      The directional linear compressibility  along the unit vector li for orthorhombic 

crystal may be represented as [16] 

     2 2 2
11 12 13 1 12 23 22 2 13 33 23 3S S S l S S S l S S S l                                  (5.13) 
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The elastic anisotropy may be represented in various ways. The degree of elastic 

anisotropy may be introduced by the following expression [232, 233] 

V R
G

V R

G GA
G G




                                                                                                  
    (5.14) 

The value of AG is zero in the case of elastic-isotropic materials. For defining the 

degree of elastic anisotropy for all crystalline symmetry, Ranganathan et al. [234] 

introduced the term universal elastic anisotropy index AU as 

U V V

R R
5 6B GA

B G
  

                                                                                  
(5.15)

        
   

 

      Elastic isotropic materials have a value of zero for index AU [234]. Values of AU 

greater than zero reflect the degree of elastic anisotropy in materials. Minimum and 

maximum values of linear compressibility (βmin and βmax), Poisson’s ratio (νmin and 

νmax), shear modulus (Gmin and Gmax) and Young’s modulus (Emin and Emax) of the     

α-CdP2 crystal are shown in Table 5.5. These elastic quantities are calculated by 

means of the ELATE program [181, 182] using computed values of the α-CdP2 

crystal. 

      From Table 5.6, it is evident that the percentage variation of Poisson’s ratio 

relative to its minimum value is higher among the corresponding percentage 

variations of Young’s modulus, linear compressibility, shear modulus and Poisson’s 

ratio for α-CdP2. It is also clear that almost all the anisotropy indices shown               

in Table 5.6 have relatively high values under the PBEsol and LDA schemes. Under 

the B3LYP scheme, almost all the mentioned anisotropy indices have relatively low 

values. 

Polar graphs for the directional-dependent Young’s modulus of α-CdP2 at zero 

pressure under the PBE scheme are depicted in Fig. 5.2 and Fig. 5.3 using the ELATE 

program [181, 182].  
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Table 5.5: Minimum and maximum values of linear compressibility β [in 1(TPa) ], 

Poisson’s ratio ν (unitless), shear modulus G (in GPa) and Young’s modulus E (in 

GPa) of α-CdP2 

5fRef. [219]. 

 

Table 5.6: Elastic anisotropy parameters: ratio of maximum to minimum values of 

Young’s modulus E, linear compressibility β, shear modulus G and Poisson’s ratio ν 
for α-CdP2. Elastic anisotropy parameters AG and AU for α-CdP2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5gUsing Ref. [219]. 

Scheme m inG  maxG  minE  m axE  min  max m in max
 

PBEsol5f 19.09 33.42 49.20 73.14 3.41 8.36 0.091 0.418 

PBE 19.26 32.74 48.89 71.53 4.34 9.04 0.088 0.391 

PWGGA 19.59 31.98 49.32 71.00 4.37 8.99 0.104 0.387 

LDA PZ 20.01 34.70 53.07 77.28 2.80 7.53 0.102 0.447 

LDA VWN 20.15 34.79 53.36 77.37 2.82 7.49 0.103 0.443 

B3LYP 22.77 36.26 57.55 79.51 4.96 7.98 0.094 0.359 

B3PW 21.99 35.51 55.30 78.33 4.12 8.14 0.099 0.376 

PBE0 21.80 35.45 55.23 78.62 3.80 7.93 0.105 0.387 

HSE06 21.52 35.01 54.54 77.60 3.82 8.04 0.104 0.386 

Scheme Anisotropy 

max

min

E
E

 

max

min




 max

min

G
G

 

max

min




 
GA  UA  

PBEsol5g 1.49 2.45 1.75 4.59 0.020 0.234 

PBE 1.46  2.08 1.70 4.44 0.018 0.205 

PWGGA 1.44 2.06 1.63 3.70 0.016 0.184 

LDA PZ 1.46 2.69 1.73 4.40 0.020 0.238 

LDA VWN 1.45 2.65 1.73 4.32 0.019 0.233 

B3LYP 1.38 1.61 1.59 3.83 0.013 0.143 

B3PW 1.42 1.98 1.62 3.82 0.015 0.173 

PBE0 1.42 2.09 1.63 3.70 0.015 0.181 

HSE06 1.42 2.10 1.63 3.70 0.015 0.182 
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Figure 5.2: Polar graphs5h (2D view) for the directional-dependent Young’s modulus 

E (in GPa) of α-CdP2 at zero pressure under the PBE scheme. 
5hUsing the ELATE program [181, 182]. 
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Figure 5.3: Polar graph5i (3D view) for the directional-dependent Young’s modulus E 

(in GPa) of α-CdP2 at zero pressure under the PBE scheme. 
5iUsing the ELATE program [181, 182]. 

 

      The directional Young’s modulus varies from a minimum value of 48.89 GPa to a 

maximum value of 71.53 GPa under the PBE scheme. Polar graphs for the 

directional-dependent linear compressibility β of α-CdP2 at zero pressure under the 

PBE scheme are shown in Fig. 5.4 and Fig. 5.5 using the ELATE program [181, 182]. 

The directional shear modulus varies from a minimum value of 19.26 GPa to a 

maximum value of 32.74 GPa under the PBE method. 
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Figure 5.4: Polar graphs5j (2D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of α-CdP2 at zero pressure under the PBE scheme. 
5jUsing the ELATE program [181, 182]. 
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Figure 5.5: Polar graph5k (3D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of α-CdP2 at zero pressure under the PBE scheme. 
5kUsing the ELATE program [181, 182]. 

 

      The variation of directional-dependent Poisson’s ratio and shear modulus of        

α-CdP2 at zero pressure under the PBE scheme in polar form are illustrated in        

Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9. These polar graphs are plotted as per the 

convention used for the ELATE program [181, 182]. Variations of Young’s modulus 

and linear compressibility were also plotted with the PBEsol scheme in other        

work [219]. 
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Figure 5.6: Polar graphs5l (2D view) for the directional-dependent shear modulus G 

(in GPa) of α-CdP2 at zero pressure under the PBE scheme. 
5lUsing the ELATE program [181, 182]. 

. 
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Figure 5.7: Polar graph5m (3D view) for the directional-dependent shear modulus G 

(in GPa) of α-CdP2 at zero pressure under the PBE scheme. 
5mUsing the ELATE program [181, 182]. 
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Figure 5.8: Polar graphs5n (2D view) for the directional-dependent Poisson’s ratio ν 

(unitless) of α-CdP2 at zero pressure under the PBE scheme. 
5nUsing the ELATE program [181, 182]. 
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Figure 5.9: Polar graph5o (3D view) for the directional-dependent Poisson’s ratio ν 

(unitless) of α-CdP2 at zero pressure under the PBE scheme. 
5oUsing the ELATE program [181, 182]. 

5.3.2 Elastic Properties of ZnP2 

5.3.2.1 Elastic Constants  

The bulk modulus and shear modulus of β-ZnP2 are 68 GPa and 44 GPa, respectively, 

as reported by Huang et al. [88]. Young’s modulus and Poisson’s ratio of the beta 

phase of ZnP2 are 110 GPa and 0.23, respectively [88]. The zero pressure elastic 

constants (in GPa) of β-ZnP2 are 11 117,C  22 126,C  33 136,C  44 30,C  55 50,C 

66 54,C  12 50,C  13 45,C  23 22,C  15 0.03,C   25 0.3,C   35 0.4C   and 46 0C   [88].  

      In this work, an investigation of the elastic properties of the alpha phase of ZnP2 is 

carried out. The crystal of the tetragonal (I) class (4/mmm) has six independent elastic 

stiffness constants C11, C12, 13,C  C33, C44 and C66 [16]. In the present study, the 

obtained elastic stiffness constants Cij of α-ZnP2 are shown in Table 5.7 along with 
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theoretical [88, 235] and experimental data [229]. As stated by Mouhat et al. [230], 

necessary and sufficient elastic stability conditions for the crystal of the tetragonal (I) 

class (4/mmm) are expressed by the following four conditions: 

11 12C C                                                                                                              (5.16)                                                                                         

 2
13 33 11 122C C C C                                                                                            (5.17) 

44 0C                                                                        (5.18) 

66 0C                                                                                                                   (5.19) 
In this study, the obtained elastic stiffness constants (shown in Table 5.7) satisfy 

these necessary and sufficient elastic stability conditions for the crystal of the 

tetragonal (I) class (4/mmm). Thus, it asserts the mechanical stability of the α-ZnP2 

crystal. At zero pressure, it is obvious that the obtained elastic stiffness constants Cij 

are in fair agreement with the experimental values [229].  

Table 5.7:  Elastic constants Cij (in GPa) of α-ZnP2 at zero pressure  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

5pRef. [235].  
5qRef. [88].   
5rRef. [229]. 

Scheme C11 C12 C13 C33 C44 C66 

PBEsol 117.90 55.65 51.00 129.63 47.57 66.64 

PBE 108.21 46.66 42.39 118.78 44.92 62.04 

PWGGA 109.24 46.98 42.70 119.63 45.26 62.65 

LDA PZ 128.01 62.21 57.15 139.06 50.72   71.60 

LDA VWN 128.34 62.35 57.29 139.40 50.85 71.79 

B3LYP 110.24 42.25 38.22 120.05 46.07 62.85  

B3PW 115.67 48.82 44.68 126.75   47.06 65.09 

PBE0 117.95 51.43 47.44 129.75 47.29 65.71 

HSE06 116.65    50.95 46.90 128.33   46.93 64.99 

Other Work5p 116.48 54.18 48.12 126.37 44.34 59.42 

Other Work5q 118 53 45 123 45 60 

Exp.5r 102.1 30.76  115.7 42.85 52.08 
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For the crystal of the tetragonal (I) class (4/mmm) BR, BV, GR and GV may be 

represented in the following way [184, 185, 186] 

  1
R 11 33 12 132 2 4B S S S S                                                                               (5.20) 

 V 11 33 12 13
1 2 2 4
9

B C C C C                                                                            (5.21) 

      1
R 11 33 44 66 12 1315 4 2 3 2 4 2G S S S S S S 
                                          (5.22) 

   V 11 33 12 13 44 66
1 12 2 2

15 5
G C C C C C C                                                    (5.23) 

Elastic compliance constants Sij [in 1(TPa) ] of α-ZnP2 at zero pressure are shown     

in Table 5.8. The computed elastic moduli of α-ZnP2 are reported in Table 5.9.      

The orthorhombic phosphorus crystal has a Young’s modulus of 30.4 GPa [29] and a 

bulk modulus of nearly 36 GPa [236]. The Young’s modulus and bulk modulus for 

zinc crystals are 92.7 GPa and 60.6 GPa, respectively [29]. Table 5.9 shows that the 

respective computed values of Young’s modulus E and bulk modulus B of α-ZnP2 are 

higher than those of its constituent elements. In view of resisting structural 

deformation, the typical bulk modulus of ~66 GPa of α-ZnP2 reflects its considerably 

ample mechanical strength.   

 

      It is evident that the value of B/G is ~1.55 at zero pressure under the PBE scheme. 

Hence, it suggests the brittle nature of α-ZnP2. Our computed ratio c/a at zero 

pressure is 3.645 under PBE scheme, which is almost equal to the experimental value 

of 3.659 [36]. Hence, it is obvious that the computed values of Poisson’s ratio lie in 

the theoretically predicted range [137] for materials. Now, we illustrate the various 

elastic properties with different functional schemes. It is evident from Table 5.7 that 

computation with the LDA functional gives relatively high values of coefficients C11, 

C12, 13,C  C33, C44 and C66 for α-ZnP2.  
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Table 5.8: Elastic compliance constants Sij [in 
1(TPa) ] of α-ZnP2 at zero pressure 

 

 
 

 

 

 

 

 

 

 

 

 

 

5sRef. [229]. 

 

Table 5.9: Young’s modulus E (in GPa), bulk modulus B (in GPa) and shear 

modulus G (in GPa) of α-ZnP2 at zero pressure 

Scheme BV     BR BH GV GR  GH EV ER EH 

PBEsol 75.64 75.59 75.61 46.21 43.32 44.77 115.17 109.12 112.16 

PBE 66.45 66.41 66.43 43.96 41.64 42.80 108.05 103.33  105.70 

PWGGA 66.99 66.95 66.97 44.35 42.02 43.18 108.99 104.25 106.63 

LDA PZ 83.12 83.09 83.10 49.18 45.94 47.56 123.24 116.38 119.83 

LDA VWN 83.33 83.29 83.31 49.31 46.07 47.69 123.55 116.68 120.14 

B3LYP 64.21 64.18 64.20 45.79 43.94 44.87 110.98 107.33 109.17 

B3PW 70.50 70.45 70.47 46.50 44.30 45.4 114.36 109.87 112.12 

PBE0 73.14 73.08 73.11 46.68 44.37 45.53 115.48 110.71 113.11 

HSE06 72.34 72.29 72.32 46.23 43.93 45.08 114.33 109.59 111.97 

Other Work5t 73.35 73.33 73.34 43.55 41.66 42.61 109.06 105.08 107.07 

5tRef. [235]. 

    Table 5.8 shows that S12 and S13 have negative values. Young’s modulus (EV, ER 
and EH), bulk modulus (BV, BR and BH), and shear modulus (GV, GR and GH) of         

Scheme S11 S12 S13 S33 S44 S66 

PBEsol    11.78 –4.28 –2.95 10.04 21.02 15.01

PBE 12.14 –4.11 –2.86 10.46 22.26 16.12

PWGGA 12.01 –4.05 –2.84 10.39 22.10 15.96

LDA PZ 11.09 –4.11 –2.87 9.55 19.72 13.97

LDA VWN 11.06 –4.10 –2.86 9.53 19.67 13.93

B3LYP 11.26 –3.45  –2.48 9.91 21.71  15.91

B3PW 11.24 –3.72 –2.65 9.76 21.25 15.36

PBE0 11.23 –3.80 –2.71   9.69 21.15 15.22

HSE06 11.36 –3.86 –2.74  9.80  21.31 15.39

Other Work5s 12.5 –1.5 –4.69 12.64 23.34 19.2
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α-ZnP2 are reported in Table 5.9. Poisson’s ratio ν (unitless) of α-ZnP2 at zero 

pressure is illustrated in Table 5.10. Using the obtained elastic constants, these elastic 

quantities (shown in Table 5.9 and Table 5.10) are calculated by means of the 

ELATE program [181, 182]. It is also obvious that the values of elastic quantities 

obtained in Table 5.9 and Table 5.10 have relatively high values under the LDA 

functionals. 

      Based on ultrasonic measurements, according to Soshnikov et al., the calculated 

shear modulus and bulk modulus of the alpha phase of the ZnP2 are 35.7 GPa and 

62.91 GPa [229]. According to Huang et al. [88], the computed values of shear 

modulus, bulk modulus, Young’s modulus and Poisson’s ratio of α-ZnP2 are 44 GPa, 

72 GPa, 110 GPa and 0.24, respectively.  

 

Table 5.10: Poisson’s ratio ν (unitless) of α-ZnP2 at zero pressure 

Scheme       νV    νR      νH 

PBEsol 0.246 0.259 0.253 

PBE 0.229 0.241 0.235 

PWGGA 0.229 0.240 0.235 

LDA PZ 0.253 0.267 0.260 

LDA VWN 0.253 0.267 0.260 

B3LYP 0.212 0.221 0.217 

B3PW 0.230 0.240 0.235 

PBE0 0.237 0.248 0.242 

HSE06 0.237 0.247 0.242 

 

5.3.2.2 Elastic Anisotropy 

The α-ZnP2 crystal has directional-dependent variations in elastic quantities, such as 

shear modulus G, Young’s modulus E and Poisson’s ratio ν. In terms of elastic 

compliance constants Sij, Young’s modulus E along the unit vector li for the crystal of 

the tetragonal class (4/mmm) may be represented as [16] 

       
14 4 4 2 2 2 2

3 33 1 2 11 1 2 66 12 3 3 13 442 1 2E l S l l S l l S S l l S S


                             (5.24) 
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where the direction cosines are denoted by l1, l2 and l3. 

The directional linear compressibility  along the unit vector li ,for all classes of 

tetragonal crystal systems, may be represented as [16] 

    2
11 13 12 11 12 33 13 3S S S S S S S l                                                        (5.25) 

      Along different directions, the directional Young’s modulus and linear 

compressibility for α-ZnP2 at zero pressure under the PBE scheme are illustrated in 

Table 5.11.  

 

Table 5.11: Under the PBE method, the directional Young’s modulus and linear 

compressibility for α-ZnP2 at zero pressure  

 
[100]

GPa

E
 
 

[010]

GPa

E
 

 
[001]

GPa

E
 

 
[110]

GPa

E
 
 

[100]

1TPa


  

 
[010]

1TPa




  
[001]

1TPa




 

 
[110]

1TPa




 

82.41 82.41 95.57 124.35 5.16 5.16 4.74 5.16 

      Along the different crystallographic directions, the following results about the 

directional Young’s modulus and linear compressibility of the α-ZnP2 crystal may be 

inferred from our investigation: 

[100] [010] [001] [110] ;E E E E a b c                                                                      (5.26) 

[100] [010] [110] [001] ; a b c                                                                          (5.27) 

      These substantial differences themselves indicate the existence of considerable 

elastic anisotropy in the α-ZnP2 crystal. Minimum and maximum values of linear 

compressibility (βmin and βmax), Poisson’s ratio (νmin and νmax), shear modulus (Gmin 
and Gmax) and Young’s modulus (Emin and Emax) of α-ZnP2 crystal are shown in    

Table 5.12. These elastic quantities are calculated by means of the ELATE program 

[181, 182] using computed values of the α-ZnP2 crystal. 
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Table 5.12: Minimum and maximum values of linear compressibility β [in 1(TPa) ], 

Poisson’s ratio ν (unitless), shear modulus G (in GPa) and Young’s modulus E (in 

GPa) of α-ZnP2 

 

      Polar graphs (2D and 3D views) for the directional-dependent various elastic 

quantities of α-ZnP2 at zero pressure under the PBE scheme are plotted in Fig. 5.10 to 

Fig. 5.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme m inG  maxG
 

minE  m axE  min  max  m in  max  

PBEsol 31.13 66.64 84.90 133.35 4.14 4.55 0.0006 0.396 

PBE 30.78 62.04 82.41 124.35 4.74 5.16 0.0022 0.361 

PWGGA 31.13 62.65 83.28 125.52 4.71 5.12 0.0017 0.360 

LDA PZ 32.90 71.60 90.18 143.22 3.81 4.11 0.0002 0.407 

LDA VWN 32.99 71.79 90.42 143.58 3.80 4.10 0.0001 0.407 

B3LYP 34.00 62.85 88.85 126.92 4.94 5.32 0.0096 0.319 

B3PW 33.43 65.09 88.98 131.56 4.46 4.87 0.0107 0.349 

PBE0 33.26 65.71 89.06 133.04 4.26 4.71 0.0123 0.360 

HSE06 32.85 64.99 88.03 131.63 4.31 4.76 0.0127 0.361 
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Figure 5.10: Polar graphs5u (2D view) for the directional-dependent Young’s 

modulus E (in GPa) of α-ZnP2 at zero pressure under the PBE scheme. 
5uUsing the ELATE program [181, 182]. 
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Figure 5.11: Polar graph5v (3D view) for the directional-dependent Young’s modulus 

E (in GPa) of α-ZnP2 at zero pressure under the PBE scheme. 
5vUsing the ELATE program [181, 182]. 

 

      It is evident from Fig. 5.10 that the xy-plane has greater anisotropy than the        

yz-plane for Young’s modulus E. In the yz-plane, it is observed that E increases from 

82.41 GPa to about 103.4 GPa (the maximum value in the yz-plane) as the angle (with      

the [010] direction) varies from 0° to about 53.9°, and then E decreases from about 

103.4 GPa to 95.57 GPa as the angle increases from about 53.9° to 90°. The 

approximate maximum value of 103.4 GPa of Young’s modulus is again found at an 

angle of about 126.1° in the yz-plane. In the xy-plane, an increase of the angle (with 

the [100] direction) from 0° to 45° results in a continuous increase in the value of 

Young’s modulus E from 82.41 GPa to 124.35 GPa (Emax in Table 5.12). Also, as the 

angle (with the [100] direction) varies from 45° to 90°, E decreases continuously from 

124.35 GPa to 82.41 GPa (Emin in Table 5.12). In the xy-plane, the maxima of E again 

occur at an angle of 135° (with the [100] direction). For the yz- and xy- planes, the 

maximum percentage change in the value of Young’s modulus E with respect to their 

minimum values (in the corresponding planes) is about 25.5% and 50.9%, 

respectively. 
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Figure 5.12: Polar graphs5w (2D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of α-ZnP2 at zero pressure under the PBE scheme. 
5wUsing the ELATE program [181, 182]. 
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Figure 5.13: Polar graph5x (3D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of α-ZnP2 at zero pressure under the PBE scheme. 
5xUsing the ELATE program [181, 182]. 

 

      For linear compressibility β, no variation of β with angle is observed in the        

xy-plane, as apparent from Fig. 5.12. In the xz-plane, as the angle (with the [100] 

direction) changes from 0° to 90°, linear compressibility decreases continuously from 

5.16 (TPa)–1 to 4.74 (TPa)–1. Thus, in the case of linear compressibility, the xz-plane 

has anisotropy. For the xz-plane, the maximum percentage change in the value of 

linear compressibility with respect to its minimum value is about 8.9%. Moreover, it 

can be said that overall, more anisotropy is observed for Young’s modulus in 

comparison to linear compressibility for α-ZnP2. 

Directional-dependent Poisson’s ratio and shear modulus of α-ZnP2 at zero pressure in 

polar form are shown from Fig. 5.14 to Fig. 5.17. These polar graphs are plotted 

under the PBE scheme as per the convention used for the ELATE program [181, 182]. 
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Figure 5.14: Polar graphs5y (2D view) for the directional-dependent shear modulus G 

(in GPa) of α-ZnP2 at zero pressure under the PBE scheme. 
5yUsing the ELATE program [181, 182]. 
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Figure 5.15: Polar graph5z (3D view) for the directional-dependent shear modulus G 

(in GPa) of α-ZnP2 at zero pressure under the PBE scheme. 
5zUsing the ELATE program [181, 182]. 

. 

      As per the convention used in the ELATE program for the plots, the value of the 

directional shear modulus G does not vary with angular variation in the xy-plane. In 

the case of the yz-plane, shear modulus G varies from 44.92 GPa to 62.04 GPa (Gmax 

in Table 5.12). For the yz-plane, the maximum percentage change in the value of 

shear modulus G relative to its minimum value is 38.1%. For the physical quantities 

Young’s modulus E and linear compressibility β, this study reveals that the xy-plane 

has a higher level of anisotropy for Young’s modulus. 

      From Table 5.13, it is evident that the percentage variations in linear 

compressibility and Young’s modulus are about 10% and 50%, respectively. The 

shear modulus G has around 100% variation relative to its minimum value. Here, 

anisotropy parameter AG has relatively higher values in comparison with the alpha 

phase of CdP2. The variation in Poisson’s ratio is more significant in the alpha phase 

of ZnP2 than in the alpha phase of CdP2. 

 



Chapter 5 

106 
 

 
 

 
 

Figure 5.16: Polar graphs5aa (2D view) for the directional-dependent Poisson’s ratio ν 

(unitless) of α-ZnP2 at zero pressure under the PBE scheme. 
5aaUsing the ELATE program [181, 182]. 
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Figure 5.17: Polar graph5bb (3D view) for the directional-dependent Poisson’s ratio ν 

(unitless) of α-ZnP2 at zero pressure under the PBE scheme. 
5bbUsing the ELATE program [181, 182]. 

Table 5.13: Elastic anisotropy parameters: ratio of maximum to minimum values of 

Young’s modulus E, linear compressibility β, shear modulus G and Poisson’s ratio ν 
for α-ZnP2. Elastic anisotropy parameters AG and AU for α-ZnP2  

Scheme 

 

Anisotropy 

max

min

E
E

 max

min




 max

min

G
G

 max

min




 
GA  UA  

PBEsol 1.57 1.10 2.14 706.14 0.032 0.333 

PBE 1.51 1.09 2.02 162.80 0.027 0.279 

PWGGA 1.51 1.09 2.01 213.01 0.027 0.278 

LDA PZ 1.59 1.08 2.18 2379.97 0.034 0.353 

LDA VWN 1.59 1.08 2.18 4168.02 0.034 0.352 

B3LYP 1.43 1.08 1.85 33.07 0.017 0.157 

B3PW 1.48 1.09 1.95 32.71 0.024 0.249 

PBE0 1.49 1.11 1.98 29.33 0.025 0.261 

HSE06 1.50 1.10 1.98 28.54 0.026 0.262 
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5.3.3 Elastic Properties of ZnAs2 

5.3.3.1  Elastic Constants  

The monoclinic crystal has 13 independent elastic stiffness constants [16], namely 

C11, C12, 13,C  C15, C22, 23,C C25, 33,C C35, C44, C46, C55 and C66 for standard orientation. 

The elastic properties are studied for ZnAs2, which has a monoclinic unit cell. The 

computations of elastic stiffness constants under various functional schemes are 

shown in Table 5.14. It is quite apparent from Table 5.14 that the elastic stiffness 

constants C11, C22 and C33 are significantly greater than the other elastic stiffness 

constants, such as C12, 13,C  C15, 23,C C25, C35, C44, C46, C55 and C66. 

 

Table 5.14:  Elastic constants Cij (in GPa) of ZnAs2 at zero pressure 

5ccRef. [237]. 
5ddRef. [67, 238]. 

 

 

 

 

 

 

 

Scheme C11 C12 C13    C15 C22 C23 C25 C33 C35 C44 C46 C55 C66 

PBEsol5cc 126.72 63.47 59.95 –4.41 136.81 38.35 6.07 145.84 1.75 26.73 4.23 44.58 44.18 

PBE 117.83 56.74 53.64 –4.90 126.51 32.57 5.71 136.43 1.71 25.50 3.92 42.95 41.65 

PWGGA 117.87 56.70 53.71 –4.55 126.63 33.52 5.53 135.11 1.64 25.61 3.92 42.20 42.37 

LDA PZ 136.26 70.03 66.34 –3.61 146.28 43.81 6.91 156.69 2.11 27.72 4.87 45.98 47.66 

LDA VWN 134.95 68.87 65.20 –3.63 146.97 42.65 6.94 156.59 2.30 27.89 4.65 46.66 46.87 

B3LYP 119.12 53.06 50.94 –5.22 126.78 29.48 5.48 138.05   1.51 27.30 3.92 44.91 43.75 

B3PW 123.83 56.94 53.76 –5.06 131.85 32.60 5.62 142.25 1.73 28.15 4.04 45.77 45.29 

PBE0 127.56 59.81 56.46 –4.98 135.93 34.90 5.88 146.12 1.82 28.33 4.13 46.55 45.95 

Other  

Work5dd 

95.63 31.47   102.5   112.7  20.76   40.45 
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Table 5.15: Elastic compliance constants Sij [in 1(TPa) ] of ZnAs2 at zero pressure 

5eeUsing Ref. [237]. 

 

Table 5.15 illustrates the elastic compliance constants under various functional 

schemes. It is evident that values of S12, S13, S23, S25, S35 and S46 are negative. 

 

 
Figure 5.18: Computed bulk modulus B of ZnAs2 as a function of applied pressure P 

under the PBE functional. 

 

      The computed bulk modulus B of monoclinic ZnAs2 increases with applied 

pressure P. To our best knowledge, there is no other experimentally or theoretically 

Scheme S11 S12 S13 S15 S22 S23 S25 S33 S35 S44 S46 S55 S66 

PBEsol5ee 12.06 –4.63 –3.76 1.97 9.71 –0.63 –1.75 8.58 –0.62 37.98 –3.64  22.89 22.98 

PBE 12.63 –4.78 –3.86 2.23 10.27 –0.55 –1.89 8.99 –0.73 39.80 –3.74 23.82 24.36 

PWGGA 12.59 –4.71 –3.86 2.13 10.26 –0.65 –1.83 9.11 –0.68 39.60 –3.66 24.19 23.94 

LDA PZ 11.45 –4.48 –3.62 1.74 9.26 –0.67 –1.71 8.11 –0.56 36.73 –3.75 22.17 21.36 

LDA VWN 11.44 –4.40 –3.59 1.72 9.13 –0.63 –1.67 8.06 –0.58 36.45 –3.61 21.84 21.69 

B3LYP 11.87 –4.24 –3.50 2.02 9.86 –0.52 –1.68 8.65 –0.63 37.11 –3.32 22.73 23.15 

B3PW 11.59 –4.24 –3.43 1.93 9.63 –0.59 –1.63 8.47 –0.63 35.99 –3.21 22.29 22.37 

PBE0 11.41 –4.22 –3.42 1.89 9.44 –0.60 –1.62 8.32 –0.62 35.76 –3.21 21.91 22.05 
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reported data on elastic stiffness constants for monoclinic ZnAs2 at higher pressures 

for comparison with our work. It is obvious from Fig. 5.18 that bulk modulus shows a 

significant variation with pressure. 

 

Table 5.16: Computed values of Young’s modulus E (in GPa), bulk modulus B (in 

GPa) and shear modulus G (in GPa) of ZnAs2 at zero pressure 

 

Scheme BV BR BH GV  GR GH EV ER EH 

PBEsol5ff 81.44 81.28 81.36 39.60 36.67 38.14 102.24 95.63 98.95 

PBE 74.08 73.91 73.99 37.87 35.03 36.45 97.08 90.75 93.93 

PWGGA 74.16 74.01 74.09 37.75 35.06 36.40 96.82 90.83 93.84 

LDA PZ 88.84 88.62 88.73 41.54 38.35 39.95 107.82 100.54 104.20 

LDA VWN 87.99 87.81 87.90 41.74 38.57 40.15 108.12 100.93 104.54 

B3LYP 72.32 72.15 72.24 39.89 37.17 38.53 101.08 95.17 98.14 

B3PW 76.06 75.89 75.97 40.82 38.10 39.46 103.87 97.91 100.91 

PBE0 79.11 78.93 79.02 41.40 38.58 39.99 105.74 99.518 102.64 
5ffRef. [237]. 

 

The computed elastic moduli of monoclinic ZnAs2 under various functional schemes 

are reported in Table 5.16. Young’s modulus (EV, ER and EH), bulk modulus (BV, BR 
and BH), and shear modulus (GV, GR and GH) of ZnAs2 are reported in Table 5.16. 

Using the obtained elastic constants, these elastic quantities are calculated by means 

of the ELATE program [181, 182]. 

      Poisson’s ratio ν (unitless) of monoclinic ZnAs2 at zero pressure is reported in 

Table 5.17. These values of Poisson’s ratio (νV, νR and νH) of ZnAs2 at zero pressure 

are computed by means of the ELATE program [181, 182] using the obtained elastic 

constants. It is noteworthy to examine the ratio B/G for ZnAs2. The ratio B/G for the 

ZnAs2 crystals has a value of about 2. It indicates the malleable nature of 

polycrystalline ZnAs2. From Table 5.17, it is also obvious that the computed values 

of Poisson’s ratio lie in the theoretically predicted range [137] for materials.  
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Table 5.17: Computed values of Poisson’s ratio ν (unitless) of ZnAs2 at zero 

pressure 
 
 

 

 

 

 

 

 

 

 

5ggRef. [237]. 

5.3.3.2  Elastic Anisotropy 

To study the anisotropy of monoclinic ZnAs2 at zero pressure, directional Young’s 

modulus, shear modulus and linear compressibility have been investigated and their 

polar graphs have been plotted in different crystallographic planes. 

The minimum and maximum values of the linear compressibility (βmin and βmax), 

Poisson’s ratio (νmin and νmax), shear modulus (Gmin and Gmax) and Young’s modulus 

(Emin and Emax) of monoclinic ZnAs2 are shown in Table 5.18. These elastic quantities 

are calculated by means of the ELATE program [181, 182] using the computed values 

for the ZnAs2 crystal. 

      Table 5.19 illustrates that the percentage variations in the linear compressibility 

and Young’s modulus are about 25% and 70%, respectively. The shear modulus G 
has around 100% variation relative to its minimum value. It is obvious from        

Table 5.19 that the anisotropy parameter AU
 of monoclinic ZnAs2 have relatively 

higher values in comparison with alpha phase CdP2. Table 5.19 shows that the 

variation in Poisson’s ratio is more significant in the monoclinic ZnAs2 crystal than in 

the alpha phase of CdP2. 

 

Scheme νV νR νH  

PBEsol5gg 0.291 0.304 0.297 

PBE 0.282 0.295 0.288 

PWGGA 0.282 0.295 0.289 

LDA PZ 0.298 0.311 0.304 

LDA VWN 0.295 0.308 0.302 

B3LYP 0.267 0.280 0.274 

B3PW 0.272 0.285 0.279 

PBE0 0.277 0.290 0.284 
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Table 5.18: Minimum and maximum values of linear compressibility β [in 1(TPa) ], 

Poisson’s ratio ν (unitless), shear modulus G (in GPa) and Young’s modulus E (in 

GPa) of ZnAs2 

5hhRef. [237]. 

Table 5.19: Elastic anisotropy parameters: ratio of maximum to minimum values of 

Young’s modulus E, linear compressibility β, shear modulus G and Poisson’s ratio ν 

for ZnAs2. Elastic anisotropy parameters AG and AU for ZnAs2  
 

 

 

 

 

 

 

 

 

 

 

 

5iiUsing Ref. [237]. 

     The obtained value of the elastic anisotropy index AU is nearly 0.41 at zero 

pressure under the PBE method. The theoretically predicted maximum and minimum 

values of directional elastic quantities have a correlation with elastic anisotropy. 

Table 5.18 illustrates that G, E and β have significant differences between their 

Scheme m inG  maxG  minE  m axE  min  max  m in
 

max
 

PBEsol5hh 25.76 51.76 70.92 121.47 3.60 4.45 0.051 0.491 

PBE 24.60 49.67 67.29 116.32 3.95 4.95 0.038 0.481 

PWGGA 24.74 48.93 67.70 114.39 3.96 4.90 0.049 0.479 

LDA PZ 26.60 54.13 73.82 127.71 3.23 4.11 0.059 0.510 

LDA VWN 26.82 54.84 74.41 129.00 3.31 4.10 0.055 0.504 

B3LYP 26.41 51.70 71.56 120.17 4.09 5.09 0.039 0.454 

B3PW 27.25 52.43 73.82 122.84 3.88 4.80 0.048 0.458 

PBE0 27.42 53.29 74.66 125.17 3.71 4.61 0.051 0.468 

Scheme 

 
Anisotropy

 

max

min

E
E

 max

min




 max

min

G
G

 max

min




 
GA  UA  

PBEsol5ii 1.71 1.24 2.01 9.59 0.019 0.402 

PBE 1.73 1.25 2.02 12.59 0.020 0.408 

PWGGA 1.69 1.24 1.98 9.77 0.037 0.386 

LDA PZ 1.73 1.27 2.04 8.65 0.040 0.419 

LDA VWN 1.73 1.24 2.05 9.12 0.040 0.413 

B3LYP 1.68 1.25 1.96 11.72 0.035 0.368 

B3PW 1.66 1.24 1.92 9.60 0.034 0.359 

PBE0 1.68 1.24 1.94 9.20 0.035 0.368 
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respective maximum and minimum values. Hence, it is inferred that bulk anisotropy, 

as well as shear anisotropy, are exhibited by monoclinic ZnAs2. Ranganathan’s 

universal elastic anisotropy index AU has a higher value for monoclinic ZnAs2 in 

comparison with α-CdP2 and α-ZnP2.  

 

 
Figure 5.19: Polar graphs5jj (2D view) for the directional-dependent Young’s 

modulus E (in GPa) of ZnAs2 at zero pressure under the PBE scheme. 
5jjUsing the ELATE program [181, 182]. 
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Figure 5.20: Polar graph5kk (3D view) for the directional-dependent Young’s 

modulus E (in GPa) of ZnAs2 at zero pressure under the PBE scheme. 
5kkUsing the ELATE program [181, 182]. 

 

The plots of the directional Young’s modulus, shear modulus and linear 

compressibility could provide valuable insights about the elastic anisotropy of the 

crystals. It is apparent from Fig. 5.19 to Fig. 5.22 that the polar plots of the directional 

Young’s modulus and linear compressibility are not in a circular shape. Therefore, the 

presence of finite elastic anisotropy is inferred for monoclinic ZnAs2. In the xy-plane, 

Young’s modulus E first increases and then decreases continuously as the angle (with 

the x-direction) increases from 0° to 90°. 
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Figure 5.21: Polar graphs5ll (2D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of ZnAs2 at zero pressure under the PBE scheme. 
5llUsing the ELATE program [181, 182]. 
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Figure 5.22: Polar graph5mm (3D view) for the directional-dependent linear 

compressibility β [in 1(TPa) ] of ZnAs2 at zero pressure under the PBE scheme. 
5mmUsing the ELATE program [181, 182]. 

 

      The polar graphs of Young’s modulus and linear compressibility for ZnAs2 were 

plotted with the PBEsol scheme in other work [237]. The directional-dependent 

Poisson’s ratio and shear modulus of monoclinic ZnAs2 at zero pressure under the 

PBE scheme in polar form are depicted in Fig. 5.23 to Fig. 5.26. These polar graphs 

have been plotted as per the convention used for the ELATE program [181, 182]. 

 

 

 

 

 



Chapter 5 

117 
 

 
 

 
Figure 5.23: Polar graphs5nn (2D view) for the directional-dependent shear modulus 

G (in GPa) of ZnAs2 at zero pressure under the PBE scheme. 
5nnUsing the ELATE program [181, 182]. 
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Figure 5.24: Polar graph5oo (3D view) for the directional-dependent shear modulus G 

(in GPa) of ZnAs2 at zero pressure under the PBE scheme. 
5ooUsing the ELATE program [181, 182]. 
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Figure 5.25: Polar graphs5pp (2D view) for the directional-dependent Poisson’s ratio ν 
(unitless) of ZnAs2 at zero pressure under the PBE scheme. 
5ppUsing the ELATE program [181, 182]. 
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Figure 5.26: Polar graph5qq (3D view) for the directional-dependent Poisson’s ratio ν 

(unitless) of ZnAs2 at zero pressure under the PBE scheme. 
5qqUsing the ELATE program [181, 182]. 

 

5.4 Conclusions 

The projections (polar graphs) of Young’s modulus on the different xy-, xz- and yz- 

planes provide insight into the variation in Young’s modulus. Our study reveals the 

malleable nature of α-CdP2 at zero pressure. The directional Young’s modulus of      

α-CdP2 varies from 48.89 GPa to 71.53 GPa under the PBE method. The directional 

shear modulus of α-CdP2 varies from 19.26 GPa to 32.74 GPa under the PBE method. 

For α-ZnP2, the values of the elastic constants C11 and C33 are substantially greater in 

comparison to the other elastic stiffness constants, such as C12, C13, C44 and C66. The 

calculated values of the Young’s modulus and bulk modulus for polycrystalline        

α-ZnP2 are 105.70 GPa and 66.43 GPa, respectively, under the PBE method. The 

value of Young’s modulus is indicative of the stiffness of the substance. Therefore, it 
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may be concluded that the α-ZnP2 crystal has enough stiffness. Our present findings 

show that α-CdP2, α-ZnP2 and monoclinic ZnAs2 crystal systems have definite elastic 

anisotropies. The calculated value of the elastic anisotropy index AU is 0.279 at zero 

pressure in the case of α-ZnP2 under the PBE scheme. For α-ZnP2, the angular 

variation of Young’s modulus E is similar in the xz-plane and in the yz-plane. For      

α-ZnP2, the yz-plane has higher elastic anisotropy in comparison with the xy-plane for 

linear compressibility. In the case of Young’s modulus of α-ZnP2, the xy-plane has 

greater anisotropy than the yz-plane. Substantial differences are present among the 

calculated values of the directional Young’s moduli [100] [001],E E  and [110]E  for α-ZnP2. 

In general, our calculated elastic moduli of α-ZnP2 are in reasonably fair agreement 

with the existing available experimental data. Our investigation also shows that the 

yz-plane has remarkable anisotropy for the shear modulus of α-ZnP2.                          

This comprehensive computational study of the anisotropic properties of the alpha 

phase of ZnP2 may bestow a prophecy about the favored orientation of the α-ZnP2 

crystal for devising optoelectronic instruments. Our computational outcome on the 

elastic properties of α-ZnP2 might provide a guiding point for experimentalists. 

      The elastic anisotropy index AU has a higher value for monoclinic ZnAs2 in 

comparison with α-CdP2 and α-ZnP2. Our investigation illustrates that the percentage 

variation in Poisson’s ratio is higher in monoclinic ZnAs2 than in α-CdP2. The 

polycrystalline bulk modulus BH has a higher value for monoclinic ZnAs2 in 

comparison with α-CdP2 and α-ZnP2. The value of polycrystalline Young’s modulus 

EH is relatively high for α-ZnP2 in comparison with α-CdP2 and monoclinic ZnAs2. 

The polycrystalline shear modulus GH has a higher value for α-ZnP2 in comparison 

with α-CdP2 and monoclinic ZnAs2. The polar graphs in the xz-plane for the 

directional-dependent linear compressibility β show that α-CdP2 has more anisotropy 

than α-ZnP2. 
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6.1 Conclusions 

The present investigation illustrates the structures of the orthorhombic CdP2, 

tetragonal ZnP2 and monoclinic ZnAs2 crystals. Our work shows that the atomic pair 

P-P has the nearest distance of about 2.19 Å and the atomic pair Cd-P has the nearest 

distance of about 2.61 Å in the alpha phase of CdP2 under PBE scheme. The values of 

the isothermal bulk modulus 0B  of α-CdP2 are calculated with EOS (Birch-

Murnaghan, Vinet and Poirier-Tarantola) and these values lie in the range 51.94–

64.57 GPa. At zero pressure, the first pressure derivative of bulk modulus of the 

orthorhombic α-CdP2 crystal is in the range 3.93–4.17. The computed first pressure 

derivative 0B  of α-ZnP2 is about 4.5. The bulk modulus 0B  for the alpha phase of 

ZnP2 is about 64–83 GPa. In the alpha phase of ZnP2, the nearest P-P atomic pair 

distance is about 2.17 Å and the nearest Zn-P atomic pair distance is about 2.3 Å 

under LDA scheme. The computed nearest neighbor distance between the P-P atomic 

pair in the alpha phase of CdP2 is not much different from the nearest neighbor 

distance between the P-P atomic pair in the alpha phase of ZnP2. At zero pressure, the 

obtained value of the calculated angle β for ZnAs2 is around 102.46. The nearest 

atomic pair Zn-As distance is around 2.41 Å and the nearest atomic pair As-As 

distance is around 2.46 Å in the ZnAs2 crystal under PBE scheme. The estimated 

value of the first pressure derivative of the monoclinic ZnAs2 crystal lies in the 

approximate range of 2.61	to 4.20. The computed value of bulk modulus for the 

ZnAs2 crystal is in the range 72.31–86.13 GPa. In the ZnAs2 crystal, the nearest 

atomic pair As-As distance is larger than the nearest atomic pair Zn-As distance. The 

estimated first pressure derivatives 0B  of α-CdP2, α-ZnP2 and ZnAs2 lie in the general 

range of 0B  from 2 to 6 for solids. Among α-CdP2, α-ZnP2 and ZnAs2, bulk modulus 

is found to have a low value for α-CdP2. The first pressure derivative is the highest for 

α-ZnP2 among α-CdP2, α-ZnP2 and ZnAs2. 

     The present work explores the electronic properties of α-CdP2, α-ZnP2 and ZnAs2. 

In the vicinity of Fermi energy, the contribution to the density of states of each Cd 

atom is less in comparison to that of each nonequivalent phosphorus atom [P(I) and 

P(II)] in α-CdP2. The estimated approximate charge transfer values for Cd, P(I) and 

P(II) are 1.06e, 0.54e and 0.52e, respectively, for α-CdP2. The value of the maximum 
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overlap population for pair Cd-P is nearly 0.148 and for pair P-P, it is 0.076 in α-CdP2 

under PBE scheme. The value of the energy band gap of the alpha phase of CdP2 is 

almost 1.78 eV under the GGA functionals (PBE, PBEsol and PWGGA). 

For α-ZnP2, near the Fermi energy level, the contribution of each Zn atom is lower in 

comparison with each P atom. In the vicinity of the Fermi level, for the P atom of the 

alpha phase of ZnP2, the contribution of s and d orbitals is much lower than that of     

p orbitals to the density of states. It can be said that the contribution of s and d orbitals 

of P atom is negligible near Fermi energy. In a similar way, the contribution of the      

f orbitals of Zn atom of α-ZnP2 to DOS is insignificant. The p and d orbitals of Zn 

atom contributes to the density of states more than that of s orbitals of Zn atom in     

α-ZnP2 in the vicinity of Fermi energy. Near the bottom of the conduction band region 

and the top of the valence band, p orbitals of P atoms mainly contribute to the density 

of states for α-ZnP2, i.e., specified band regions have mostly P-p characters. The 

energy band gap of α-ZnP2 is about 1.5 eV under the GGA functional. Charge 

transfers take place about 1.07e, 0.52e and 0.54e for Zn atom, P(I) atom and P(II) 

atom, respectively, in the alpha phase of ZnP2. For α-ZnP2, the value of the maximum 

overlap population between pairs Zn-P is nearly 0.17 under PBE functional. The value 

of the maximum overlap population between pairs P-P is of the order of 0.04 for       

α-ZnP2.  

      In the vicinity of the Fermi energy level, the contributions of each nonequivalent 

arsenic atom to the density of states are more significant than those of each 

nonequivalent zinc atom in the ZnAs2 crystal. Near the Fermi energy, for DOS, the 

contribution of p orbitals is greater than that of s and d orbitals of the nonequivalent 

As(I) atoms in monoclinic ZnAs2. In the vicinity of the Fermi energy level, all the 

arsenic atoms follow nearly the same pattern for the density of states in ZnAs2. The 

contributions of s and f orbitals of the nonequivalent Zn(I) atom to DOS are less than 

that of p and d orbitals of the nonequivalent Zn(I) atom in ZnAs2. The computed 

charge transfer values for the nonequivalent atoms Zn(I) and Zn(II) are nearly 0.96e 

and 0.94e, respectively, for ZnAs2. The estimated values of charge transfer for the 

nonequivalent atoms As(I), As(II), As(III) and As(IV) are nearly 0.46e, 0.46e, 0.46e 
and 0.51e, respectively, for the monoclinic ZnAs2 crystal. The value of energy band 

gap under the GGA functionals is about 0.81 eV for ZnAs2. The value of the 
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maximum overlap population for pair As-As is about 0.27 and for pair Zn-As, it is 

about 0.20 in ZnAs2. 

 

      Our study provides insight into the elastic properties of the semiconductor 

compounds α-CdP2, α-ZnP2 and ZnAs2. The present work reveals the malleable nature 

of the alpha phase of CdP2. The value of the elastic constant C11 is the maximum 

among the other elastic constants of α-CdP2. The elastic constants C22 and C33 are 

substantially greater than other elastic stiffness constants, such as C12, C13, 23,C C44, 

C55 and C66 in the alpha phase of CdP2. Our results show that 11 22 33 12C C C C   and 

44 66 55C C C   for α-CdP2. It is observed that elastic moduli H H HE B G   for α-CdP2. 

The estimated Poisson’s ratio H  for α-CdP2 is about 0.28–0.32. The elastic 

anisotropy parameters ratio of the maximum to minimum values of Young’s modulus, 

linear compressibility, shear modulus and Poisson’s ratio for α-CdP2 are nearly 1.46, 

2.08, 1.70 and 4.44, respectively, under PBE scheme. In the case of Young’s modulus 

of α-CdP2, the yz-plane has greater anisotropy than the xy-plane.  

     Our study illustrates 33 11 66 44C C C C    for the alpha phase of ZnP2. For α-ZnP2, 

the values of the elastic constants C11 and C33 are sufficiently greater than the other 

elastic stiffness constants, such as C12, C13, C44 and C66. It is also observed that elastic 

moduli H H HE B G   for α-ZnP2. The computed value of Poisson’s ratio H  for        

α-ZnP2 is in the range 0.21–0.26. This work indicates the brittle nature of the alpha 

phase of ZnP2.  

Along different crystallographic directions, the directional Young’s modulus of the  

α-ZnP2 crystal follows the relation [100] [010] [001] [110] ;E E E E a b c     , whereas 

linear compressibility follows the relation [100] [010] [110] [001].      The elastic 

anisotropy parameters ratios of the maximum to minimum values of Young’s 

modulus, linear compressibility and shear modulus for α-ZnP2 are nearly 1.51, 1.09 

and 2.02, respectively. The ratio of the maximum to minimum value of Poisson’s ratio 

for α-ZnP2 is much greater than that of α-CdP2. For the Young’s modulus of α-ZnP2, 

the yz-plane has a smaller anisotropy than the xy-plane. The yz-plane has substantial 

anisotropy for shear modulus for the alpha phase of ZnP2. 
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      Our present work illustrates 11C , 22C  and 33C  are much greater than other elastic 

constants, such as C44, 55C , C66, 12C , C13, 23C , 25C , 35C  and 46C  for ZnAs2 crystals. 

For ZnAs2, it is observed that elastic moduli H H HE B G  . The computed value of 

Poisson’s ratio H  for ZnAs2 is in the range of 0.27–0.31. The elastic anisotropy 

parameters ratios of maximum to minimum values of Young’s modulus, linear 

compressibility, shear modulus and Poisson’s ratio for ZnAs2 are 1.73, 1.25, 2.02 and 

12.59, respectively, under PBE scheme.  

      The bulk modulus BH of ZnAs2 has a higher value than that of α-CdP2 and α-ZnP2. 

Polycrystalline shear modulus GH has a higher value for α-ZnP2 in comparison with    

α-CdP2 and ZnAs2. The obtained values of Poisson’s ratios H  for α-CdP2, α-ZnP2 and 

ZnAs2 lie in the theoretically predicted range. This investigation shows that α-CdP2, 

α-ZnP2 and ZnAs2 crystal systems have definite elastic anisotropy. This investigation 

on the anisotropic properties of the semiconductor compounds ZnAs2, α-CdP2 and    

α-ZnP2 might give a guiding point for the favoured orientations of these crystals for 

devising optoelectronic instruments. In the case of the requirement of malleable 

nature of the materials for device fabrication, α-CdP2 and ZnAs2 have advantages over 

α-ZnP2. If a device requires more stiffness for linear compression (i.e., large value of 

Young’s modulus), then α-ZnP2 has advantages over α-CdP2 and ZnAs2. In the case of 

the requirement of a low value of transverse strain (for a given longitudinal strain) for 

the polycrystalline materials, then α-ZnP2 should be preferred over α-CdP2 and ZnAs2, 

as α-ZnP2 has a relatively low value of Poisson’s ratio. Our comprehensive 

computational results about the elastic properties of α-CdP2, α-ZnP2 and ZnAs2 

crystals might be useful for experimentalists. The DFT method in computational 

materials science played an important role in calculating the elastic anisotropy of 

these compounds. The present study of these semiconducting compounds is likely to 

be beneficial for further research in optoelectronic device applications. 

 

6.2 Future Scope 

      Concerning future scope, our findings would be useful to explore the properties of 

II-V2 semiconductors through further experiments. Semiconducting compounds CdP2, 

ZnP2 and ZnAs2 may be studied with the doping of suitable elements. Investigations 
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may be carried out with different amounts of doping. The properties of CdP2, ZnP2 

and ZnAs2 with doping may also be investigated with temperature variations. Further 

research might reveal the properties of these compounds for doping. More DFT work 

is needed to explore the temperature-dependent structural, electronic and elastic 

properties of these compounds. Pressure-dependent structural, electronic and elastic 

properties of these compounds may also be explored.  

The photoelastic properties of these compounds have yet to be investigated by 

researchers. Investigation of the piezoelectric tensor of the semiconducting 

compounds CdP2, ZnP2 and ZnAs2 is to be explored. A thorough investigation of 

dielectric properties, such as reflection coefficient, absorptivity, etc., should be carried 

out. The thermoelectric properties of these semiconducting compounds have yet to be 

thoroughly investigated. Electron thermal conductivity, Seebeck coefficient and 

power factor have not yet been studied thoroughly for these compounds. Furthermore, 

the calculation of effective mass should be explored in future research. The properties 

of the nano phase of these compounds may be studied to expand different 

perspectives on technological applications. There are some other II-V2 

semiconducting compounds, such as ZnSb2, CdSb2, CdAs2, ZnN2 and CdN2. 

Investigators gave scant attention to the compounds ZnSb2, CdSb2, CdAs2, ZnN2 and 

CdN2. There is a lot of scope for investigating the unexplored properties of these 

compounds in future research. Our investigation might stimulate further experimental 

research on these compounds.   
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SUMMARY 

This thesis deals with an Ab-Initio investigation of some II-V2 semiconducting 

compounds. A DFT study of mainly α-CdP2, α-ZnP2 and ZnAs2 has been carried out 

in the present investigation. The usefulness of semiconductors in devices has 

encouraged accelerated research endeavors to characterize their properties better [2]. 

A quantum mechanical Ab-Initio computer program provides the computation scheme 

to investigate many properties of crystalline systems [3]. Semiconductors have many 

technological utilizations, such as transistors, photoconductors, solar cells, strain 

gauges, charge-coupled devices, light-emitting diodes (LEDs), etc. [8]. Generally, 

semiconductor devices have reliability and these devices are also relatively 

economical [8]. Applications of the optical properties of solids are commercially 

valuable [9]. For optical integrated circuits, photonics has become an important area 

of research nowadays [9]. The level of Fermi energy in the DOS (density of states) 

versus the energy plot plays an important role to determine the electronic transport 

properties of solids [13]. For the deformation of matter, the theory of elasticity forms 

a mathematical model [18]. In general, crystals are said to be anisotropic because of 

their direction-dependent properties. II-V2 semiconducting compounds are made from 

the 12th and 15th column elements of the periodic table. These compounds are useful 

in the fabrication of optoelectronic devices [25, 26, 27]. 

The thesis consists mainly of six chapters. In Chapter 1, Group II and Group V 

elements for II-V2 semiconducting compounds have been discussed. A brief overview 

of some II-V2 semiconducting compounds, such as II-V2 phosphides and II-V2 

arsenides, is provided in Chapter 1. A special attention has been given to the review 

of the literature on CdP2, ZnAs2 and ZnP2. Motivation for research work and an 

outline of the thesis are also provided in the first chapter. 

In Chapter 2, the basic theoretical framework and computational software/ tools 

are illustrated. Chapter 2 describes DFT (Density Functional Theory), LCAO (Linear 

Combination of Atomic Orbitals), Basis Sets, Mulliken population, equation of state 

(EOS), computation cost, elastic stiffness and compliance constants. Useful 

software/tools CRYSTAL Program, DL Visualize (DLV), CRYSPLOT and ELATE 

are introduced in Chapter 2. 
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The structural, electronic and elastic properties of α-CdP2, α-ZnP2 and ZnAs2 are 

studied with the CRYSTAL code (periodic ab-initio HF and DFT code) [124, 140]. In 

this study, computations are carried out with the GGA functionals (PBE [187, 188], 

PBEsol [189, 190] and PWGGA [191, 192, 193, 194, 195, 196]), LDA functionals 

(LDA PZ [197, 198] and LDA VWN [197, 199]), global hybrid functionals (B3PW 

[191, 192, 193, 200, 201], B3LYP [199, 200, 202, 203] and PBE0 [204, 205, 206, 

207]) and range-separated hybrid functional (HSE06 [187, 188, 208, 209, 210, 211, 

212, 213, 214, 215]). In the present investigation, the basis sets for cadmium, zinc, 

phosphorus and arsenic atoms are used from the CRYSTAL-Basis Set Library of the 

Torino group [124, 140]. An 8 8 8   Monkhorst-Pack k-point mesh [139] is 

implemented for computation. The Fock/Kohn-Sham matrix mixing factor is utilized 

as a convergence tool for computations. Electronic properties, such as the density of 

states and band structures, Mulliken population, etc., are investigated by means of the 

CRYSTAL Code [124, 140]. Unit cell parameters and atom coordinates can be 

optimized under the full geometry optimization process [124] by means of the 

CRYSTAL program. The CRYSTAL program can also explore the dielectric [168, 

169, 170], elastic [171, 172, 173, 174], and piezoelastic [174, 177, 178] properties of 

the substances. 

DL Visualize (DLV) is a graphical user interface (GUI) that provides the facility 

of displaying and editing the structures of molecules, periodic structures of surfaces 

and crystals [179]. DLV facilitates the GUI to CRYSTAL Code [124, 140, 179]. 

CRYSPLOT [180] is an online tool to plot different specified features of 

crystals computed with the CRYSTAL Program [124, 140]. It provides a plotting 

option for the total and projected density of states for atoms [180]. The CRYSPLOT 

also allows plotting the density of states and band structure in a single combined plot 

[180]. The Fermi energy line in the band structure can be displayed through the 

CRYSPLOT [180]. 

ELATE [181, 182] is an online tool that is used for the exploration of elastic 

tensors. The maximum and minimum values of elastic moduli may be obtained using 

the ELATE software [181]. The EALTE software also gives the values of the 

anisotropy parameters. Directional variations of shear modulus, Young’s modulus, 

linear compressibility and Poisson’s ratio are analyzed and visualized by means of the 

ELATE software [181]. Visualizations of 2D and 3D plots may be obtained using   

the ELATE program [181]. 
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In Chapter 3, the optimized lattice parameters of conventional cells have been 

investigated using initial geometry data of II-V2 semiconducting compounds by means 

of CRYSTAL Code [124, 140]. Atomic pair distances for the first 06 nearest atoms in 

compounds are computed. Plots of relative energy per unit cell of the compound 

versus its unit cell volume are illustrated in this work. 

The computation of the Birch-Murnaghan [124, 132, 133, 134, 135], Vinet [124, 

130, 131] and Poirier-Tarantola [124, 132, 136] equations of states [173] is carried 

out. Two crystalline phases of cadmium diphosphide, namely, alpha and beta, are 

reported [40, 41, 50]. The α-CdP2 crystal has an orthorhombic crystal structure at 

room temperature [41]. A tetragonal crystal structure is reported for the beta phase of 

CdP2 [35, 45]. The reported space group of α-CdP2 is Pna21 [40, 41]. The lattice 

parameters of α-CdP2 are a = 9.90 Å, b = 5.408 Å and c = 5.171 Å, as stated by 

Goodyear et al. [40]. The α-CdP2 comprises three nonequivalent atoms, namely, Cd, 

P(I) and P(II) [40]. The atomic pair P-P has the nearest distance of nearly 2.19 Å, 

whereas atomic pair Cd-P has the nearest distance of about 2.61 Å under PBE 

scheme. The computed values of bulk modulus of α-CdP2 are in the range 51.94–

64.57 GPa. The computed values of the first pressure derivative 0B  of α-CdP2 are 

around 4.05. Hence, this range for α-CdP2 lies in the general typical range of 0B  from 

2 to 6 for solids [220]. 

Two different crystalline phases of ZnP2 are shown as α-ZnP2 and β-ZnP2 [28, 

34]. The α-ZnP2 and β-ZnP2 crystals have tetragonal and monoclinic crystal 

structures, respectively [28, 34]. α-ZnP2 has lattice parameters a = 5.08 Å and             

c =18.59 Å [36]. The conventional unit cell of the alpha phase of ZnP2 has 08 formula 

units [28, 36]. The estimated computed range of the first pressure derivative for        

α-ZnP2 is 4.34–4.58. The estimated range of bulk modulus for α-ZnP2 is 63.9–       

83.3 GPa. 

The space group of monoclinic ZnAs2 is P21/c (ܥଶ௛ହ ) [46, 47]. The monoclinic 

unit cell of ZnAs2 has 08 formula units [46]. The conventional unit cell of ZnAs2 has 

six nonequivalent atoms [47, 50]. The computed angle β of monoclinic ZnAs2 is 

around 102.46. The typical computed value of the first pressure derivative for ZnAs2 

is   2.61–4.20. The estimated values of bulk modulus for ZnAs2 are in the range of 

72.31–86.13 GPa. 
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Chapter 4 addresses the study of the electronic properties of α-CdP2, α-ZnP2 

and ZnAs2. The energy band gaps of these compounds have been computed under 

various functional schemes. For α-CdP2, the highest point of the valence band is 

found on the path Z   and the lowest point of the conduction band is found near the 

X point. For α-CdP2, computations have been performed along high symmetry 

directions for special points (namely , , , , , , ,X Z S U Y R  etc.) in the Brillouin zone [4]. 

So, it illustrates the indirect energy band gap for α-CdP2. The density of states of 

nonequivalent atoms in the alpha phase of CdP2 is studied. Each P(I) and P(II) atom 

contributes more in comparison to the contribution to the density of states (DOS) by 

Cd atom. Under PBE scheme, the computed values of charge transfer for P(I), P(II) 

and Cd atoms are about 0.54e, 0.52e and 1.06e, respectively, in the alpha phase of    

α-CdP2. The value of the maximum overlap population for the pair Cd-P is found to 

be nearly 0.148 under PBE functional. The present study shows that the energy band 

gap of α-CdP2 is almost 1.78 eV under the GGA functionals (PBEsol, PBE and 

PWGGA). 

The energy band gap value for the alpha phase of ZnP2 under the PBE functional 

is 1.54 eV, which is an indirect energy band gap. For α-ZnP2, point M is the highest 

point in the valence band. The contributions of s and d orbitals of P(I) atom of α-ZnP2 

are minimal to the density of states near the Fermi level. Also, the contribution of p 

orbitals of P(I) atom of α-ZnP2 is much higher than that of s and d orbitals to DOS. 

For α-ZnP2, the contribution of the f orbitals of Zn atom to DOS is negligible. In       

α-ZnP2 under PBE scheme, charge transfers take place about 1.07e, 0.52e and 0.54e 
for Zn atom, P(I) atom and P(II) atom, respectively. The maximum overlap 

population between pairs Zn-P is about 0.17 in α-ZnP2 under PBE scheme.  

For the monoclinic ZnAs2, the energy band gap under the GGA functionals is 

about 0.81 eV. The value of the maximum overlap population for pair Zn-As is about 

0.20 and for pair As-As, it is about 0.27 in ZnAs2. 

      The contributions of each nonequivalent arsenic atom to the density of states near 

Fermi energy are more significant than those of each nonequivalent zinc atom in 

ZnAs2. In the vicinity of the Fermi energy, for DOS, the contribution of p orbitals of 

nonequivalent As(I) atom is more significant than that of s and d orbitals of 

nonequivalent As(I) atom in the ZnAs2 crystal. Also, the contributions of s and f 

orbitals of nonequivalent Zn(I) atom to DOS are less than those of p and d orbitals of 
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nonequivalent Zn(I) atom in monoclinic ZnAs2. The computed values of charge 

transfer for nonequivalent atoms As(I), As(II), As(III) and As(IV) are nearly 0.46e, 

0.46e, 0.46e and 0.51e, respectively, for ZnAs2. The calculated charge transfer values 

for the nonequivalent atoms Zn(I) and Zn(II) are about 0.96e and 0.94e, respectively, 

for ZnAs2.  

In Chapter 5, elastic constants Cij and elastic compliance constants Sij are 

computed for α-CdP2, α-ZnP2 and ZnAs2. For these compounds, the investigation of 

the directional dependence of linear compressibility, Poisson’s ratio, shear modulus 

and Young’s modulus is carried out by plotting polar graphs. Minimum and 

maximum values of linear compressibility β, Poisson’s ratio ν, shear modulus G and 

Young’s modulus E of these compounds are computed under various functionals. 

The variation of the bulk modulus of the II-V2 compounds with pressure is studied 

using the keyword EOS [173]. The elastic quantities Young’s modulus E, bulk 

modulus B and shear modulus G are computed by utilizing the ELATE program [181, 

182]. For these compounds, it is observed that H H HE B G  . The brittleness and 

malleability properties of the polycrystalline substances are correlated with the ratio 

of bulk modulus B to shear modulus G [231]. The malleable nature of a 

polycrystalline substance is likely to be predicted for a ratio B/G greater than nearly 

1.75 [231]. Ranganathan’s term universal elastic anisotropy index AU [234] is 

calculated for these compounds. 

  The orthorhombic CdP2 crystal has nine independent elastic constants C11, C12, 

13,C C22, C23, 33,C C44, C55 and C66 [16]. The necessary and sufficient elastic stability 

conditions for the orthorhombic crystal, as stated by Mouhat et al. [230], are followed 

by the alpha phase of CdP2. 

The crystal of the tetragonal (I) class (4/mmm) has 06 independent elastic 

stiffness constants C11, C12, 13,C 33,C C44 and C66 [16]. In view of the resisting 

structural deformation, the bulk modulus of nearly 66 GPa of the alpha phase of ZnP2 

shows its considerably ample mechanical strength. In the case of α-ZnP2, the xy-plane 

has greater anisotropy than the yz-plane for Young’s modulus E. The maximum 

percentage change in the value of linear compressibility of α-ZnP2 with respect to its 

minimum value is about 8.9% for the xz-plane.  

The thirteen independent elastic stiffness constants, namely C11, C12, 13,C C15, 

C22, 23,C C25, 33,C C35, C44, C46, C55 and C66 are reported for standard orientation of 
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monoclinic crystal [16]. In the present study, the calculated bulk modulus B of ZnAs2 
increases with applied pressure (P from 0 to 6 GPa). The shear modulus G has around 

100% variation relative to its minimum value for ZnAs2. The anisotropy index AU has 

a higher value for ZnAs2 in comparison with α-CdP2 and α-ZnP2. 

In Chapter 6, conclusions and future scope are illustrated. The present 

investigation on the anisotropic properties of the semiconducting compounds α-CdP2, 

α-ZnP2 and ZnAs2 might provide a guiding point for the favored orientation of these 

crystals for devising optoelectronic instruments. This study of these semiconducting 

compounds is likely to be beneficial for further research in optoelectronic device 

applications. 
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Abstract
Theenergybands, density of states, chargedensity,Mullikenpopulation, equationof state andelastic
properties ofα-CdP2havebeen studied.Exchange correlation functionalPBEsol is utilized in this study.
Theoptimized equilibrium lattice parameters of the conventional cell havebeenobtained.Thepresent
investigation indicates the existenceof an indirect bandgapof 1.76 eV inα-CdP2 crystal. Elastic calculations
show themechanical stability of the alphaphaseofCdP2 crystal. Thisworkprovides an analysis of
directionalYoung’smodulus and linear compressibility forα-CdP2.The studyof the elastic anisotropy
parameters shows that the alphaphasehas adefinite elastic anisotropy.The calculatedDebye temperatureof
α-CdP2 is 288.1K.

1. Introduction

Cadmiumdiphosphide (II-V2 group semiconducting compound) is reported tobe a good feasiblematerial for device
application in thefieldof optoelectronics [1–3] and thermal sensors [4]. Theoptical properties ofCdP2 enable it to be
used in the fabricationof solar cells [5]. CdP2 is also useful as a dopant compound for the fabricationof nGaAs/InP
PINphotodetector arrays by themetal-organic chemical vapor deposition technique [6]. CdP2 exists in twodifferent
crystalline phases, namely alpha andbeta [7]. The alphaphase ofCdP2 is anorthorhombic structure at room
temperature [7]. Theα-CdP2 crystal structure has a space groupPna21with four formulaunits in the conventional
unit cell [8]. Apronounced structural character in the alphaphase ofCdP2 is a helical [ ]-

¥ P1 -chain coordinated to
cadmium ions [7]. Thepeculiarity of theα-CdP2 structure is chains of P atoms existing parallel to eachother in the c
direction in the crystal [9].DFT calculation showed thepiezoelectricity in the alphaphase ofCdP2 [10–12]. This
piezoelectric characteristic opens thedoors for the future possibility of usingα-CdP2 indesigningpiezoelectric
devices such as piezoelectric sensors, transducers, etc. The piezoelectric effect is closely related to basicmathematical
formulations basedon elastic stiffness constants anddielectric susceptibility.Our elastic characterization and
interpretationmay get considerable practical utility in thefieldof piezoelectric device technology for future research.
The experimental and theoretical investigations of tetragonalβ-CdP2have been carried out by several researchers
[13–16]. To thebest of our knowledge, thorough experimental and theoretical investigations of the alphaphase of
CdP2havenot yet been reported.Thefirst principlemethodwithindensity functional theoryhas been applied to
explore the structural properties, energybands, density of states, charge density,Mullikenpopulation [17] and elastic
properties ofα-CdP2.Ourpresent ab initio study is able to explore theunrevealed properties ofα-CdP2.Our attempt
tofill the existing research gap in the studyof the alphaphase ofCdP2 crystal is likely to be advantageous for
researchers to carry out further investigations for application in optoelectronics andpiezoelectric device
technologies. The article thereon is organized as follows: In section 2, computational techniques are described.This is
followedby results anddiscussion in section 3. Finally,wediscuss conclusions in section4.

2. Computational details

In this study, all the calculations are performedwithCRYSTALProgram [18, 19]which is an ab initio quantum
mechanical program. CRYSTALProgram (periodic ab initioHFandDFT code) uses a localizedGaussian type
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basis set to form the sets of Bloch functions. In this computational work, theDFT exchange-correlation
functional GGA (GeneralizedGradient Approximation) is implemented. The study of geometrical
optimization, EOS (equation of state), bands, DOS (density of states),Mulliken population and elastic constants
is carried outwith PBEsol [20]method. The basis sets (for Cd and P atoms) have been employed from
CRYSTAL-basis set library of Torino group [18, 19].We use the basis set of 36 orbitals for Cd atom [21] and the
basis set of 18 orbitals for P atom [22]. The calculations are performed using an 8×8×8Monkhorst-Pack k-
pointmesh [23] that corresponds to 125 k-points in the irreducible Brillouin zone (IBZ). The SCF convergence
threshold on the total energy is set to 10–10Hartree. The BROYDENparameter [18, 19, 24, 25] is employed to
achieve the rapid convergence of the self-consistent iterations. The Fock/Kohn–Shammatrixmixing factor
(FMIXING) [18, 19] of 40%has become useful for the calculations of geometry optimization. The optimized
structure is utilized to determine bulkmodulus and itsfirst pressure derivative by deploying the EOSwithin
±8%variation of the volume of optimized geometry. Furthermore, electronic and elastic properties [26, 27] are
investigated at the equilibrium volume. Themagnitude of the strain step for elastic calculations is 0.01. The unit
cell is drawn usingDLV software [28].We use aweb-oriented tool CRYSPLOT [29] for charge density and
energy band structures.

3. Results and discussion

3.1. Structural details
The structure ofα-CdP2 comes under the orthorhombic space group Pna21with approximate values of lattice
parameters a=9.90Å, b=5.408Å and c=5.171Å [8]. Its unit cell consists of fourCd and eight P atoms [8].
Using the available geometry ofα-CdP2 [8], we have obtained the optimized lattice parameters and fractional
coordinates of the atoms for the unit cell ofα-CdP2 as shown in the tables 1 and 2. The deviations in the
calculated lattice parameters (a, b and c) from the experimental values [8] are within 1.6% and deviation in
conventional cell volume is 2.43%. From table 1, it is obvious that our calculation of cell volume of≈283.57 Å3 is
in accordancewith otherDFTwork [15]with a small deviation of 0.86%. Thus, our computed results are in good
agreementwith the other reported results in tables 1 and 2. The unit cell ofα-CdP2with optimized lattice
parameters is shown infigure 1. There exist deformed tetrahedral bonds [8] as depicted infigure 1. Each
cadmiumatom is bonded to its four nearest phosphorus atoms. It is also evident from figure 1 that each P atom
is bonded to two nearest Cd atoms and two nearest P atoms. Table 5 shows that atomP5 (nonequivalent atom
P-I) has thefirst four nearest neighbors P10, P9, Cd3 andCd1 atoms. AtomP9 (nonequivalent atomP-II)has the
first four nearest neighbors P6, P5, Cd1 andCd2 atoms.

Table 1.The lattice parameters (a, b and c in Å) and volumeV (Å3) of the
conventional cell ofα-CdP2.

Scheme a b c V

Present work PBEsol 10.0051 5.4924 5.1603 283.5689

Exp.a 9.90 5.408 5.171 276.85

Otherworkb 286.0

a Reference [8].
b Reference [15].

Table 2.The fractional coordinates of the nonequivalent atoms in the unit cell ofα-CdP2.

Atom
Fractional coordinates

Present work (PBEsol scheme) Exp.a Other workb

X/a Y/b Z/c X/a Y/b Z/c X/a Y/b Z/c

Cd 0.1502 0.1050 0.2621 0.1529 0.1016 0.2606 0.1529 0.1011 0.2606

P (I) 0.1222 0.4441 –0.3924 0.1186 0.4458 0.5850 0.1185 0.4442 0.5957

P (II) –0.0091 0.2722 –0.0916 –0.0074 0.2697 –0.0676 –0.0064 0.2693 –0.1036

a Reference [8].
b Reference [9].
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3.2. Equation of state
In this study, the EOS computations for the alpha phase are performed using its computed optimized lattice
parameters and fractional coordinates of atoms. The isothermal bulkmodulus B0 and itsfirst pressure
derivative ¢B 0 are computed usingVinet [30], Poirier-Tarantola [31] andBirch-Murnaghan [32]EOSs. These
estimated values of B0 and ¢B 0 are shown in table 3. In this present work, it is evident from table 3 that our
computed values of B0 and ¢B 0 ofα-CdP2 at zero pressure withVinet, Poirier-Tarantola and Birch-Murnaghan
EOSs are≈57.88GPa and≈3.94, respectively. Almost the samefindings each for B ,0 ¢B 0 andV0 (equilibrium

Figure 1. Schematic representation of the crystal structure ofα-CdP2. The lengths a, b and c are lattice parameters. (a) Schematic 3D
view of the conventional cell ofα-CdP2. (b) Side view (ab plane) ofα-CdP2 crystal structure. (c) Side view (ac plane) ofα-CdP2 crystal
structure. (d) Side view (bc plane) ofα-CdP2 crystal structure.
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cell volume) are obtained using these three EOS schemes. For the unit cell of the alphaCdP2, with respect to
minimumenergy, the curve of relative energyE (per unit cell) against its cell volume is plotted bymeans of
Vinet EOS as shown infigure 2. The quantities B0 and ¢B 0 are notmere coefficients in the equation of states,
furthermore, they are physical characteristics of thematerials which depend on the structural composition of the
materials [33]. Themost common typical range of ¢B 0 for solidmaterials is from2 to 6 [33], so obtained value
3.94 of ¢B 0 forα-CdP2 is quite physically reasonable in this study.

3.3. Band structure andDOS
A study of electronic structure and density of states is useful in the determination of the semiconducting
properties of amaterial. Infigure 3, the electronic band structure is plotted along suitable paths connecting eight
special points of high symmetry [23, 34] in the reciprocal space. The highest point of the valance band lies on a
path ‐G Z and the lowest point of conduction band lies close toX point in the reciprocal space. Figure 3 indicates
the existence of an indirect band gap, Eg of 1.76 eV in the orthorhombic phase of CdP2. The value 1.76 eV falls
within the typical range of energy band gap of semiconductor substances. A band gap of 1.439 eVwas reported in
other computational work [10, 11].

To reveal the distribution of electronic states, the computed total DOS alongwith the partial density of states
(PDOS) of Cd and P atoms are depicted in figure 4. In the immediate vicinity of the top of the valence band
region and the bottomof the conduction band region, p orbitals of phosphorus atoms predominantly
contribute toDOS.With regard toDOS, the contribution of P(II) atom, in general, is larger than that of P(I)
atom, but overall PDOS patterns due to the individual nonequivalent P atoms are broadly similar.We pay
particular attention toDOS lying near the Fermi level, as theseDOS are important with reference to the
electronic properties of solids. In our investigation, we also observed about PDOS that chiefly p orbitals of the
second and third sp shells (shown in table 4) of phosphorus atoms contribute toDOS lying near the Fermi level
in the valence region and furthermore, the contribution of the third sp shell (havingmore diffused orbitals) is
larger than that of the corresponding second sp shell of that P atom. Besides, contribution toDOS fromCd

Table 3.Bulkmoduli (B0), theirfirst pressure derivatives ( ¢B 0) and
equilibrium cell volumes (V0) ofα-CdP2 at zero pressure using PBEsol
scheme.

EOSmethod B0 (GPa) ¢B 0 V0 (Å
3)

Present work Vinet 57.88 3.94 283.5264

Present work Poirier-Tarantola 57.92 3.94 283.5254

Present work Birch-Murnaghan 57.83 3.93 283.5277

Figure 2.The variation of relative energyE (per unit cell) ofα-CdP2with its cell volume taking theminimal value in the set of
calculations as zero. The curve shows theVinet EOSfits the computed data points ( ) in the approximate range of 261Å3 to 305Å3.
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atoms is relatively low at the top of the valence band aswell as at the bottomof the conduction band.Hence, the
top of the valence band and the bottomof the conduction band aremostly of P-p characters.

3.4. Charge density andMulliken population analysis
The computed total electron densitymap for (010) plane is shown infigure 5. The isodensity contour lines for
the total electron densitymap are sketched at intervals of 0.02 e/Bohr3. Furthermore, the total distribution
of electronic charge density is predicted through theMulliken population analysis. There exist two
crystallographically nonequivalent distinct sites of P atom, therefore the charge distribution is accordingly
influenced by the orientation of the respective atom in the unit cell, as evident from table 4. In the present
investigation, CRYSTALCode shows 288 orbitals for the unit cell. In table 4, orbitals and shells alongwith
corresponding charges are shown and it is obvious that there is also a small charge transfer of about 0.041e to d
shell of the associated basis set of each P atom in theα-CdP2 crystal.

Many physical properties of amaterial are correlated to its constituent chemical bonds.Mulliken population
analysis plays an important role to predict the characteristics of the chemical bonding in thematerials.Mulliken
overlap populations forα-CdP2 are illustrated in table 5. The positive value of the total overlap population
corresponds to bonding, whereas the negative value of the total overlap population corresponds to antibonding
[17].Mulliken population analysis is an important tool for the estimation of the distribution of charges in the
atomic orbitals. In our study, for the one formula unit ofα-CdP2, there is total charge transfer of about 1.02
electrons fromoneCd atom to twoP atoms as evident from table 4.On the basis of the result of charge transfer,
an approximated effective valence state ofα-CdP2may be represented as + - -Cd P P .1.02 0.52 0.50 Thus, it
indicates the reasonable presence of ionic character in theCd-P bonding. TheMulliken overlap population also

Figure 3.Under PBEsol scheme, the energy band structure ofα-CdP2 (in the range of –8 to 20 eV relative to Fermi energy level EF).
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provides a good estimation of the covalent bonding [17]. A high level of overlap population reflects the high level
of covalent character of a chemical bond [35]. In the present study, the overlap population betweenCd atomand
immediate neighboring P atom is about 0.14 as shown in table 5. This value 0.14 is reasonably small compared to
1 and it can be inferred that theCd-P bonds are also partially covalent in nature. The present study suggests the
existence ofmixed ionic-covalent character of bonds (Cd-P) in the alpha phase of CdP2. Furthermore, the
Mulliken overlap population is useful to reflect its correlationwith the strength of the bond. A comparison of
hardness mHv of the bonds (betweenCd atomand its immediate neighboring P atoms) is carried out using the
expression ( ) ( ) /=m m m -H AP vGPav b

5 3 [36]where, mvb and mP denote, respectively, the volume andMulliken
overlap population of theμ type bond andA is the proportional coefficient. In the present study, results show
that the computed hardness of bondsCd1-P7, Cd1-P9, Cd1-P5 andCd1-P10 are in the ratio 1.254 : 1.082 : 1.094 :
1.000. The higher level of hardness of the bondCd1-P7 among thesementionedCd-P bondsmay be attributed to
its relatively highMulliken overlap population and short bond length.

As reported byOlofsson andGullman [9], the bond distance (Cd-P) between close neighbor cadmium and
phosphorus atoms ranges from2.562Å to 2.619Å and the bond distance (P-P) between close neighbor

Figure 4.The plot of total DOS alongwith contributions from s, p and d orbitals of the nonequivalent atoms ofα-CdP2 (in the range
of –5 to 7.5 eV relative to Fermi energy level EF). On the y-axis all arb. units are identical. Fermi level is shown by vertical dashed lines at
0 eV.
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phosphorus atoms ranges from2.167Å to 2.20Å. It is evident from table 5 that our calculated values of bond
distances are in fair agreement with thementioned ranges [9].

3.5. Elastic properties
3.5.1. Elastic constants andmechanical stability
The study of elastic properties is extremely useful for understanding the ability of thematerial to resist the
deformation. The direction-dependent elastic stretchability of crystals under different tensile strains can shed
light on its advantages for engineering applications. A high value of the ratio of bulkmodulus to shearmodulus
enables the crystal tomeet various requirements of curvilinear shape for practical applications. Also,
piezoelectricity is dependent on the intermingling of elastic and electric phenomena. In view of the device
application ofα-CdP2 crystal, it is necessary to estimate its elastic constants so that itsmechanical stability and
elastic propertiesmay be examined. The orthorhombic crystal systemhas nine independent elastic stiffness

Table 4.Mulliken population analysis forα-CdP2 using PBEsolmethod. Charges are indicated in the unit of elementary charge e.

Cd P(I) P(II)

Total charge (N. electrons)= 46.977 Total charge (N. electrons)= 15.522 Total charge (N. electrons)= 15.502

OrbitalNo. Shell Shell charge OrbitalNo. Shell Shell charge Orbital No. Shell Shell charge

1 s 2.000 145 s 2.000 217 s 2.000

2–5 First sp 7.998 146–149 First sp 7.824 218–221 First sp 7.824

6–9 Second sp 7.983 150–153 Second sp 2.000 222–225 Second sp 2.001

10–14 d 9.994 154–157 Third sp 3.657 226–229 Third sp 3.637

15–18 Third sp 6.539 158–162 d 0.042 230–234 d 0.041

19–22 Fourth sp 1.426

23–26 Fifth sp 1.077

27–31 d 8.767

32–36 d 1.193

Figure 5.Computed total electron densitymap ofα-CdP2 for (010) plane using PBEsolmethod. Lattice parameters a=10.0051 Å
and c=5.1603Å.
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coefficients due to its orthorhombic symmetry [37]. These computed elastic stiffness coefficientsCij ofα-CdP2
are reported in table 6. According toMouhat et al [38], necessary and sufficient elastic stability conditions for an
orthorhombic system are given by the following expressions [from (1) to (3)]:

( )>C C C 111 22 12
2

( )+ - - - >C C C C C C C C C C C C2 0 211 22 33 12 13 23 11 23
2

22 13
2

33 12
2

( )> > > >C C C C0, 0, 0, 0 311 44 55 66

The computed elastic stiffness constants (given in table 6) satisfy these necessary and sufficient elastic stability
conditions for the orthorhombic system. It shows themechanical stability of the alpha phase of CdP2 crystal.

In terms of elastic stiffness constantsCij and elastic compliance constants Sij, more quantities such as bulk
modulus, shearmodulus andPoisson’s ratiomay be represented. Voigt bulkmodulusBV andReuss bulk
modulusBR can be expressed as [39, 40]

[ ] ( )= + + + + +B C C C C C C
1

9
2 2 2 4V 11 22 33 12 13 23

[ ] ( )= + + + + + -B S S S S S S2 2 2 5R 11 22 33 12 13 23
1

Similarly, Voigt shearmodulusGV andReuss shearmodulusGR are given by [39, 40]

[ ] [ ] ( )= + + - - - + + +G C C C C C C C C C
1

15

1

5
6V 11 22 33 12 13 23 44 55 66

[ ( ) ( ) ( )] ( )= + + + + + - + + -G S S S S S S S S S15 4 3 4 7R 11 22 33 44 55 66 12 13 23
1

According to theVoigt-Reuss-Hill approximation, polycrystalline bulk and shearmoduli can be estimated as
[39–41]

[ ] ( )= +B B B
1

2
8H R V

[ ] ( )= +G G G
1

2
9H R V

Macroscopic polycrystalline Young’smodulusEH and Poisson’s ratio nH can be expressed as [39–41]

( )=
+

E
B G

B G

9

3
10H

H H

H H

( )
( )n =

-
+

B G

B G

3 2

2 3
11H

H H

H H

Table 5.Mulliken overlap populations forα-CdP2 using PBEsol
scheme.

Atomic pair AB DistanceAB (Å) Overlap population AB

Cd1-P7 2.569 0.154

Cd1-P9 2.592 0.139

Cd1-P5 2.594 0.141

Cd1-P10 2.618 0.135

Cd1-P6 3.768 – 0.009

P5-P10 2.183 0.068

P5-P9 2.242 0.021

P5-Cd3 2.569 0.154

P5-P6 3.608 – 0.066

P5-Cd2 3.768 – 0.009

P9-P6 2.183 0.068

P9-Cd2 2.618 0.135

P9-P10 3.599 – 0.069

Table 6.Elastic stiffness constants (inGPa) ofα-CdP2 at zero pressure.

Scheme C11 C12 C13 C22 C23 C33 C44 C55 C66

PresentWork PBEsol 105.163 50.352 43.412 86.520 41.857 74.230 33.418 24.329 27.482

OtherWorka PBE 101.3 31.1 37.7 91.4 32.5 87.3 37.4 28.2 19.0

a Reference [15].
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To investigate themechanical properties ofα-CdP2, various elasticmoduli are determined fromelastic constants
and are summarized in table 7. The value of bulkmodulus is 58.745GPawhich indicates that thematerial has
sufficientmechanical strength to resist structural deformation. TheCd crystal has bulkmodulus of≈46.7GPa
[42] andYoung’smodulus of≈62.3GPa [42]. The values of bulkmodulus andYoung’smodulus for
orthorhombic P crystal are≈36GPa [43] and≈30.4GPa [42] respectively. It can be seen in table 7 that the
calculated values of Young’smodulus and bulkmodulus ofα-CdP2 are greater than the respective values of
Young’smoduli and bulkmoduli of constituent elements (Cd and P crystals). But, in comparison to the typical
values of bulkmodulus≈97.8GPa [44] andYoung’smodulus≈163GPa [45] of the semiconductor Si, it is
obvious that our calculated respective values of bulkmodulus 58.745GPa andYoung’smodulus 66.219GPa of
α-CdP2 are considerably smaller. Since Young’smodulus reflects the stiffness of thematerial, soα-CdP2 crystal
has less stiffness than Si crystal.

It is also obvious from table 7 that the values of computed Poisson’s ratios are about 0.31. Therefore these
calculated values of Poisson’s ratios are within the theoretically essential limits [48] formaterials. In general, the
ratio of bulkmodulusB to shearmodulusGmay be used tomake predictions about the nature of polycrystalline
material in terms of brittleness andmalleability [49]. A high value ofB/G indicates themalleable nature of the
polycrystallinematerials [49]. For a value ofB/Ggreater than about 1.75,malleable characteristics of a
polycrystallinematerial is expected [49]. In the present study, the value ofBH/GH is 2.328which is greater than
1.75, therefore it indicates themalleable nature ofα-CdP2. Thus the value 2.328 of B/G for the alpha phase of
CdP2 crystal indicates that the crystal has reasonablemalleability and this favorable property opens the
possibility to allow the curved shape ofα-CdP2 crystal in the semiconductor devices.

3.5.2. Elastic anisotropy
Most of thematerials show elastic anisotropic behavior. Atomic bonding arrangement in different crystalline
planes is an important factor for the determination of the elastic anisotropy. Elastic anisotropy plays a key role in
various directional dependentmechanical-physical phenomena. Elastic constants such as Young’smodulus,
shearmodulus andPoisson’s ratiomay have directional dependent variations, hence they have an influence on
themechanical characteristics of the crystallinematerials.With the help of the theory ofmicro-cracks analysis
from the elastic anisotropy, the enhancement in themechanical durability of the crystals for device application
may be understood [50]. A comprehensive understanding of the elastic anisotropy of thematerials is of great
significance because it has an important outlook for device designing. The preferred orientation of the crystals is
a vital aspect for optimum technological usage of thematerials inmicroelectromechanical systems, hence the
knowledge of the elastic anisotropy is essential for imparting the desired physical and electrical properties to
devices. For an orthorhombic crystal system, the directional Young’smodulus E in the direction of the unit
vector li is given by the expression [37]

[ ] ( )= + + + + + + + + -E l S l l S l l S l S l l S l S l l S l l S l l S2 2 2 121
4

11 1
2

2
2

12 1
2

3
2

13 2
4

22 2
2

3
2

23 3
4

33 2
2

3
2

44 1
2

3
2

55 1
2

2
2

66
1

where l1, l2 and l3 are direction cosines and quantity Sij are known as elastic compliance constants.
For an orthorhombic crystal system, the directional linear compressibilityβ in the direction of the unit

vector li is given by the expression [37]

( ) ( ) ( ) ( )b = + + + + + + + +S S S l S S S l S S S l 1311 12 13 1
2

12 22 23 2
2

13 23 33 3
2

Table 8 shows the computed Young’sModulus and linear compressibility ofα-CdP2 along [100], [010] and
[001] crystallographic directions. Figure 6 shows the variations of Young’smodulus with direction. Figures 6(a)
and 7(a) are plotted using ELATE software. It is evident from the figures 6(a) and 7(a) that schematic plots of
directional Young’smodulus and linear compressibility are not spherical in shape; therefore, they reflect the
finite elastic anisotropy for the alpha phase of CdP2. The elastic anisotropy of a crystalmay be characterized by
different approaches. For instance, to compute the elastic anisotropy, the degree of elastic anisotropymay be
defined by expressions [51, 52]

Table 7.Using PBEsolmethod, computed values of bulkmodulusB (inGPa), shearmodulusG (inGPa), Young’smodulus E (inGPa),
Poisson’s ratio n (unitless) ofα-CdP2 according toVoigt-Reuss-Hill notationsa.

BV BR BH GV GR GH EV ER EH nV nR nH

Present work 59.684 57.807 58.745 25.732 24.735 25.233 67.496 64.942 66.219 0.3115 0.3128 0.3121

a Values ofB,G,E and n have been obtained using ELATE software [46, 47].
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For elastic isotropicmaterials, bothAB andAG are zero. Our calculated values ofAB andAG for the degree of
elastic anisotropy are shown in table 8. It is evident from table 8 that values ofAB andAG are nonzero, therefore,
α-CdP2 crystal hasfinite bulk anisotropy aswell as shear anisotropy. In different way, Ranganathan et al [53]
defined the universal elastic anisotropy index as

( )= + -A
B

B

G

G
5 6 16U V

R

V

R

The indexAU is applicable to all crystalline symmetry and itsminimumvalue is zero for elastic isotropic
materials [53]. Table 8 shows the calculated value of 0.234 ofAU for the alpha phase of CdP2. Both tables 8 and 9
illustrate the presence offinite elastic anisotropy characteristics inα-CdP2.

Significant differences are found among the computed values ofE100,E010 andE001 as shown in table 8. From
figures 6 and 7 as well as from table 8, the following conclusions about directional Young’smodulus and linear
compressibility ofα-CdP2 crystal are drawn:

> > > >E E E a b c;100 010 001

Table 8.The computed values of directional Young’smodulus, linear compressibility and elastic anisotropy parameters forα-CdP2
under PBEsol scheme.

( )
E
GPa

100

( )
E
GPa

010

( )
E
GPa

001

( )
b

-TPa
100

1 ( )
b

-TPa
010

1 ( )
b

-TPa
001

1 ( )
A

in%
B

( )
A

in %
G

AU

Present work 69.135 54.526 49.195 3.411 5.529 8.359 1.60 1.98 0.234

Figure 6.Directional dependence (polar graph) of the computed Young’smodulusE (in GPa) ofα-CdP2. (a) 3DView representation
of directional Young’smodulus (b)Projections of directional Young’smodulus on ab, ac and bc planes.
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b b b< < > >a b c;100 010 001

Hence, crystal hasmore hardness (less compressible) along a axis than along b and c axes. It is evident from
table 9 that there is a substantial difference between theminimumandmaximumvalues of the directional shear
modulusG. This is also the case for Young’smodulus E and linear compressibilityβ. ForG, E andβ, respective
maximumvariations are 75.08%, 48.67%and 145.06% relative to theirminimumvalues. These variations
themselves reveal the presence of considerable elastic anisotropy in the alpha phase of CdP2.

For Young’smodulusE, it is readily apparent from the figure 6(b) that anisotropy is greater in bc plane than
in ab and ac planes, since the angular variation ofE in bc plane ismore pronounced among ab, bc and ac planes.
In ab plane, E increases from69.135GPa to≈72GPa (maximumvalue in ab plane) as the angle (with a axis)
increases from0° to≈31°, thenE decreases from≈72GPa to 54.526GPa as the angle varies from≈31° to 90°.
Themaximumvalue≈72GPa ofE is again observed at an angle (with a axis) of≈149° in the ab plane. It is
observed in the ac plane thatE decreases continuously from69.135GPa to 49.195GPa (Emin in table 9) as the
angle (with a axis) increases from0° to 90°. In the bc plane,E increases from54.526GPa to 73.140GPa as the
angle (with b axis) increases from0° to≈47°. Furthermore, as the angle increases from≈47° to 90° in the bc
plane, the value ofE decreases from73.140GPa to 49.195GPa (Emin in table 9). Themaximumvalue 73.140GPa
(Emax in table 9) ofE is observed at the angles (with b axis) of≈47° and≈133° in bc plane.

In the case of linear compressibilityβ, it emerges clearly fromfigure 7(b) that theacplane has greater
anisotropy than ab and bcplanes. For theabplane,β increases continuously from3.411 (TPa)−1 (βmin in table 9) to
5.529 (TPa)−1 as the angle (witha axis) increases from0° to 90°. Inacplane, an increase of the angle (with a axis)

Figure 7.Directional dependence (polar graph) of the computed linear compressibilityβ [in (TPa)−1] ofα-CdP2. (a) 3DView
representation of directional linear compressibility (b)Projections of directional linear compressibility on ab, ac and bc planes.

Table 9.Variations of the shearmodulusG (inGPa), Young’smodulus E (inGPa), linear compressibilityβ [in
( )-TPa 1] and Poisson’s ratio n (unitless) ofα-CdP2 using PBEsolmethoda.

Gmin Gmax Emin Emax bmin bmax nmin nmax

Present work 19.087 33.418 49.195 73.140 3.411 8.359 0.0908 0.4179

a Minimumandmaximumvalues ofG,E,β and n have been obtained using ELATE software.
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from0° to 90° results in a continuous increase of linear compressibilityβ from3.411 (TPa)−1 to
8.359 (TPa)−1 (βmax in table 9). In the case of bcplane, as the angle (with b axis) varies from0° to 90°,β increases
continuously from5.529 (TPa)−1 to 8.359 (TPa)−1. Thedifferent types of physical quantitiesmayhave different
levels of anisotropy corresponding to a given planeof the samematerial. Thepresent investigation shows that
among ab, ac and bcplanes, the anisotropy is high in acplane for linear compressibility,whereas the anisotropy is
high in bcplane for Young’smodulus.

3.5.3. Debye temperature
Debye temperature, which is a useful variable, correlates the thermodynamic properties with elastic properties
of the crystal [54]. TheDebye temperature of thematerial is related to its thermal conductivity [55]. Thermal
conductivity is an important parameter for heat transfer phenomena. Hence, concerning the dissipation of heat,
the thermal conductivity is a significant factor for determining the speed and efficiency of the electronic devices.
TheDebye temperature is a function of the aggregate elastic properties (polycrystalline bulkmodulusBH and
shearmodulusGH) [54]. TheDebye temperature qD is related to average sound velocity vm in a crystal by the
expression [54]

⎜ ⎟
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N
17D
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1 3
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where h is Planck’s constant, NA is Avogadro’s constant, r is the density, k is Boltzmann’s constant,M is the
molecularmass, n is the number of atoms in themolecule. Average sound velocity vm in a polycrystalline
substancemay be expressed as [54]
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where vs and vl represent the average shear and longitudinal sound velocities, respectively. These velocitiesmay
be expressed in terms of density ρ, polycrystalline bulkmodulusBH and shearmodulusGH [54]:
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For the alpha phase of CdP2, the calculated values ofmean sound velocity andDebye temperature are 2769m s–1

and 288.1K respectively. The calculated values of shear sound velocity and longitudinal sound velocity are given
in table 10.

4. Conclusions

The present study presents thefirst principle investigation of electronic and elastic properties ofα-CdP2 by
employingGGA-PBEsol functional in theCRYSTAL code. The obtained equilibrium volume of the unit cell is in
quite agreementwith experimental data. Ourwork predicts the existence of the indirect band gap of 1.76 eV in
α-CdP2 crystal. The p orbitals of phosphorus atomsmake themajor contribution toDOS lying at the top of the
valence band and the bottomof the conduction band. Broadly speaking, P(II) atom contributesmore toDOS in
comparison to P(I) atom.Mulliken population analysis shows that the total charge transfer of nearly 1.02
electrons takes place fromoneCd atom to twoP atoms in each formula unit ofα-CdP2.Mulliken population
analysis also indicates that Cd-P bonds havemixed ionic-covalent characters. Our investigation reveals that the
Cd1-P7 bond has a higher level of hardness amongCd1-P7, Cd1-P9, Cd1-P5 andCd1-P10 bonds.

Our presentfindings of anisotropic propertiesmay contribute to better predictions for the preferred
orientation of crystals for designing optoelectronic devices. In this investigation, the computed value of
Ranganathan’s universal elastic anisotropy indexAU is 0.234. The considerable variation is observed among the
computed values of directional Young’smoduli E100,E010 andE001. It can be inferred from the present

Table 10.The computed values of density, Debye temperature, shear sound velocity,
longitudinal sound velocity and average sound velocity ofα-CdP2 under PBEsolmethod.

ρ(kg m−3) νs (m s−1) νl (m s−1) νm (m s−1) θD (K)

Presentwork 4119 2475 4736 2769 288.1

12

Mater. Res. Express 7 (2020) 095901 SRajpurohit et al



investigation that the alpha phase of CdP2 has definite elastic anisotropy and crystal ismore hard (less
compressible) along a axis than along b and c axes. Among ab, ac and bc planes, the anisotropy is high in bc plane
for Young’smodulus, whereas the anisotropy is high in ac plane for linear compressibility. The present study
indicates themalleable nature of the alpha phase of CdP2. The computed value ofDebye temperature ofα-CdP2
is 288.1 K. TheQuite adequacy of the values ofDebye temperature and elasticmoduli is in favor ofα-CdP2 to
become a promisingmaterial for device application in optoelectronics. Hence, thesefindings provide an outlook
for experimental implications.
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